Ionic polymer metal composites (IPMCs) are electroactive material devices that bend at low applied voltage (1-4 V). Inversely, a voltage is generated when the materials are deformed, which makes them useful both as sensors and actuators. In this paper, we propose two new highly porous carbon materials as electrodes for IPMC actuators, generating a high specific area, and compare their electromechanical performance with recently reported RuO 2 electrodes and conventional IPMCs. Using a direct assembly process (DAP), we synthesize ionic liquid (Emi-Tf) actuators with either carbide-derived carbon (CDC) or coconut-shell-based activated carbon-based electrodes. The carbon electrodes were applied onto ionic liquid-swollen Nafion membranes using a direct assembly process. The study demonstrates that actuators based on carbon electrodes derived from TiC have the greatest peak-to-peak strain output, reaching up to 20.4 mε (equivalent to >2%) at a 2 V actuation signal, exceeding that of the RuO 2 electrodes by more than 100%. The electrodes synthesized from TiC-derived carbon also exhibit significantly higher maximum strain rate. The differences between the materials are discussed in terms of molecular interactions and mechanisms upon actuation in the different electrodes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.