We prepare dye-sensitized solar cells (DSSCs) fabricated with a poly (ethylene glycol) based polymer gel electrolytes (PGEs) incorporating surface carbon shell-functionalized ZrO2 nanoparticles (ZrO2-C) as nanofillers (NFs). ZrO2 are polymerized via atom transfer radical polymerization (ATRP) using poly (ethylene glycol) methyl ether methacrylate (POEM) as a scaffold to prepare the ZrO2-C through carbonization. The power conversion efficiency of DSSC with 12 wt% ZrO2-C/PGEs is 5.6%, exceeding that with PGEs (4.4%). The enhanced efficiency is attributed to Lewis acid-base interactions of ZrO2-C and poly (ethylene glycol), catalytic effect of the carbon shells of ZrO2-C, which results in reduced crystallinity, enhanced ion conductivity of electrolytes, decreased counterelectrode/electrolyte interfacial resistance, and improved charge transfer rate. These results demonstrate that ZrO2-C introduction to PGEs effectively improves the performance of DSSCs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.