This study delves into the comprehensive overview of different agronomic and genetic approaches of wheat biofortification to combat iron and zinc deficiency. Secondary source of data is used during the study of the subject. Micronutrient deficiencies, particularly those arising from zinc (Zn) and iron (Fe), pose serious human health problems for billions of people worldwide and millions of children, who predominantly depend upon cereals-based diet, suffer from malnutrition.Wheat, being a chief staple food crop for most of the under-developed countries, should be given emphasized to make it enriched with nutrients and minerals as in many cases, it constitutes a low level of nutritional elements. Most of the nutrients are lost during milling. Biofortification acts as the most promising and economic strategic option to effectively increase the micronutrients in the edible portion of the crop. Agronomic and Genetic biofortification are the two approaches; however, genetic engineering is getting more concern for researches. This uses the techniques to enhance the bioavailability of nutrients and reduce the antinutrient compounds. Although there are many technologies to increase nutrient contents, biofortification is assumed to be the most sustainable. Different strategies for wheat biofortification are assessed in this paper for overcoming challenges seen during the process. We discuss promising ways to enhance iron and zinc content in wheat, highlight global wheat production scenario and malnutrition status, and also key challenges are accentuated.
This study delves into the comprehensive overview of different agronomic and genetic approaches of wheat biofortification to combat iron and zinc deficiency. Secondary source of data is used during the study of the subject. Micronutrient deficiencies, particularly those arising from zinc (Zn) and iron (Fe), pose serious human health problems for billions of people worldwide and millions of children, who predominantly depend upon cereals-based diet, suffer from malnutrition. Wheat, being a chief staple food crop for most of the underdeveloped countries, should be given emphasized to make it enriched with nutrients and minerals as in many cases, it constitutes a low level of nutritional elements. Most of the nutrients are lost during milling. Biofortification acts as the most promising and economic strategic option to effectively increase the micronutrients in the edible portion of the crop. Agronomic and Genetic biofortification are the two approaches; however, genetic engineering is getting more concern for researches. This uses the t echniques to enhance the bioavailability of nutrients and reduce the anti-nutrient compounds. Although there are many technologies to increase nutrient contents, biofortification is assumed to be the most sustainable. Different strategies for wheat biofortification are assessed in this paper for overcoming challenges seen during the process. We discuss promising ways to enhance iron and zinc content in wheat, highlight global wheat production scenario and malnutrition status, and also key challenges are accentuated.
In order to survive and thrive in nature, every organism interacts with the ecosystem’s components, including insect pests. In most situations, the interaction of insects and pests with the ecosystem is detrimental and necessitates control measures. Successful and sustained pest control in agroecosystems is dependent on understanding of the approach, pest biology, and pest ecology. There are occasions when a farmer must use pesticides to control a pest infestation, but there are also numerous non-chemical options. Some of these options are classified as mechanical and physical controlling approaches. Physical and mechanical control measures, which are the oldest of all tactics used directly against pests, kill the pest, interrupt their usual behavior, or alter the environment to discourage pest activity. They are one-of-a-kind in that they have no or minimal negative environmental impacts and leave no residue on agricultural goods. Unlike pesticides, there is no need for official regulation/registration, which would necessitate millions of dollars in research to fulfill environmental and animal toxicity, food safety, and effectiveness criteria. This study has merely highlighted the most important findings in past and recent research on physical and mechanical insect pest management techniques.
Eriosoma lanigerum (Hausmann), the woolly apple aphid (WAA), is a major worldwide pest that feeds on Malus species. It is one of the most important invasive apple pests in the world, having spread from eastern North America to almost every apple-growing region on the planet. The crown and root systems of apple trees are infested by this aphid species. This aphid’s crawlers migrate up and down an apple tree continually, and the root colonies serve as a persistent source of infestation on aerial portions The WAA’s salivary gland secretions drive the injured tissues to create abnormal growths or galls that obstruct the transport of water and nutrients within the plant, weakening the tree. On the above-ground portions and on the roots of apple trees, the aphid develops tightly packed colonies coated with white, waxy, filamentous secretions. The use of resistant rootstocks, chemical, and biological control, or a combination of all three, are the mainstays of WAA management. Aphid resistance has emerged as a result of decades of pesticide usage, necessitating research to find alternatives to chemicals for pest control. This study has merely highlighted the information on the biology of the woolly apple aphid, the sorts of damage it produces, and management approaches for reducing it.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.