The growth of regularly generated data from many financial activities has significant implications for every corner of financial modeling. This study has investigated the utilization of these continuous growing data by a means of an automated process. The automated process can be developed by using Machine learning based techniques that analyze the data and gain experience from the underlying data. Different important domains of financial fields such as Credit card fraud detection, bankruptcy detection, loan default prediction, investment prediction, marketing and many other financial models can be modeled by implementing machine learning models. Among several machine learning based techniques, the use of parametric and non-parametric based methods are approached by this research. Two parametric models namely Logistic Regression, Gaussian Naive Bayes models and two non-parametric methods such as Random Forest, Decision Tree are implemented in this paper. All the mentioned models are developed and implemented in the field of Credit card fraud detection, bankruptcy detection, loan default prediction. In each of the aforementioned cases, the comparative study among the classification techniques is drawn and the best model is identified. The performance of each classifier on each considered domain is evaluated by various performance metrics such as accuracy, recall, precision, F1-score and mean squared error. In the credit card fraud detection model the decision tree classifier performs the best with an accuracy of 99.1% and, in the loan default prediction and bankruptcy detection model, the random forest classifier gives the best accuracy of 97% and 96.84% respectively.
The novel coronavirus disease (COVID-19) has created immense threats to public health on various levels around the globe. The unpredictable outbreak of this disease and the pandemic situation are causing severe depression, anxiety and other mental as physical health related problems among the human beings. This deadly disease has put social, economic condition of the entire world into an enormous challenge. To combat against this disease, vaccination is essential as it will boost the immune system of human beings while being in the contact with the infected people. The vaccination process is thus necessary to confront the outbreak of COVID-19. The worldwide vaccination progress should be tracked to identify how fast the entire economic as well as social life will be stabilized. The monitor of the vaccination progress, a machine learning based Regressor model is approached in this study. This vaccination tracking process has been applied on the data starting from 14th December, 2020 to 24th April, 2021. A couple of ensemble based machine learning Regressor models such as Random Forest, Extra Trees, Gradient Boosting, AdaBoost and Extreme Gradient Boosting are implemented and their predictive performance are compared. The comparative study reveals that the Extra trees Regressor outperforms with minimized mean absolute error (MAE) of 6.465 and root mean squared error (RMSE) of 8.127. The uniqueness of this study relies on assessing as well as predicting vaccination intake progress by utilizing automated process offered by machine learning techniques. The innovative idea of the method is that the vaccination process and their priority are considered in the paper. Among several existing machine learning approaches, the ensemble based learning paradigms are employed in this study so that improved prediction efficiency can be delivered.
The novel coronavirus disease (COVID-19) has created immense threats to public health on various levels around the globe. The unpredictable outbreak of this disease and the pandemic situation are causing severe depression, anxiety and other mental as physical health related problems among the human beings. To combat against this disease, vaccination is essential as it will boost the immune system of human beings while being in the contact with the infected people. The vaccination process is thus necessary to confront the outbreak of COVID-19. This deadly disease has put social, economic condition of the entire world into an enormous challenge. The worldwide vaccination progress should be tracked to identify how fast the entire economic as well as social life will be stabilized. The monitor ofthe vaccination progress, a machine learning based Regressor model is approached in this study. This tracking process has been applied on the data starting from 14th December, 2020 to 24th April, 2021. A couple of ensemble based machine learning Regressor models such as Random Forest, Extra Trees, Gradient Boosting, AdaBoost and Extreme Gradient Boosting are implemented and their predictive performance are compared. The comparative study reveals that the AdaBoostRegressor outperforms with minimized mean absolute error (MAE) of 9.968 and root mean squared error (RMSE) of 11.133.
The growth of regularly generated data from many financial activities has significant implications for every corner of financial modelling. This study has investigated the utilization of these continuous growing data by a means of an automated process. The automated process can be developed by using Machine learning based techniques that analyze the data and gain experience from the underlying data. Different important domains of financial fields such as Credit card fraud detection, bankruptcy detection, loan default prediction, investment prediction, marketing and many more can be modelled by implementing machine learning methods. Among several machine learning based techniques, the use of parametric and non-parametric based methods are approached by this research. Two parametric models namely Logistic Regression, Gaussian Naive Bayes models and two non-parametric methods such as Random Forest, Decision Tree are implemented in this paper. All the mentioned models are developed and implemented in the field of Credit card fraud detection, bankruptcy detection, loan default prediction. In each of the aforementioned cases, the comparative study among the classification techniques is drawn and the best model is identified. The performance of each classifier on each considered domain is evaluated by various performance metrics such as accuracy, F1-score and mean squared error. In the credit card fraud detection model the decision tree classifier performs the best with an accuracy of 99.1% and, in the loan default prediction and bankruptcy detection model, the random forest classifier gives the best accuracy of 97% and 96.84% respectively.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.