BackgroundMost ovarian cancers are highly invasive in nature and the high burden of metastatic disease make them a leading cause of mortality among all gynaecological malignancies. The homeodomain transcription factor, PITX2 is associated with cancer in different tissues. Our previous studies demonstrated increased PITX2 expression in human ovarian tumours. Growing evidence linking activation of TGF-β pathway by homeodomain proteins prompted us to look for the possible involvement of this signalling pathway in PITX2-mediated progression of ovarian cancer.MethodsThe status of TGF-β signalling in human ovarian tissues was assessed by immunohistochemistry. The expression level of TGFB/INHBA and other invasion-associated genes was measured by quantitative-PCR (Q-PCR) and Western Blot after transfection/treatments with clones/reagents in normal/cancer cells. The physiological effect of PITX2 on invasion/motility was checked by matrigel invasion and wound healing assay. The PITX2- and activin-induced epithelial-mesenchymal transition (EMT) was evaluated by Q-PCR of respective markers and confocal/phase-contrast imaging of cells.ResultsHuman ovarian tumours showed enhanced TGF-β signalling. Our study uncovers the PITX2-induced expression of TGFB1/2/3 as well as INHBA genes (p < 0.01) followed by SMAD2/3-dependent TGF-β signalling pathway. PITX2-induced TGF-β pathway regulated the expression of invasion-associated genes, SNAI1, CDH1 and MMP9 (p < 0.01) that accounted for enhanced motility/invasion of ovarian cancers. Snail and MMP9 acted as important mediators of PITX2-induced invasiveness of ovarian cancer cells. PITX2 over-expression resulted in loss of epithelial markers (p < 0.01) and gain of mesenchymal markers (p < 0.01) that contributed significantly to ovarian oncogenesis. PITX2-induced INHBA expression (p < 0.01) contributed to EMT in both normal and ovarian cancer cells.ConclusionsOverall, our findings suggest a significant contributory role of PITX2 in promoting invasive behaviour of ovarian cancer cells through up-regulation of TGFB/INHBA. We have also identified the previously unknown involvement of activin-A in promoting EMT. Our work provides novel mechanistic insights into the invasive behavior of ovarian cancer cells. The extension of this study have the potential for therapeutic applications in future.Electronic supplementary materialThe online version of this article (doi:10.1186/s12943-015-0433-y) contains supplementary material, which is available to authorized users.
Metabolic activity of malignant cells is very different from that of their nontransformed equivalents, which establishes metabolic reprogramming as an important hallmark of every transformed cell. In particular, the current arena of research in this field aims to understand the regulatory effect of oncogenic signaling on metabolic rewiring in transformed cells in order to exploit this for therapeutic benefit. Alterations in lipid metabolism are one of the main aspects of metabolic rewiring of transformed cells. Up-regulation of several lipogenic enzymes has been reported to be a characteristic of various cancer types. Lysophosphatidic acid (LPA), a simple byproduct of the lipid biosynthesis pathway, has gained immense importance due to its elevated level in several cancers and associated growth-promoting activity. Importantly, a current study revealed its role in increased de novo lipid synthesis through up-regulation of sterol regulatory element-binding protein 1, a master regulator of lipid metabolism. This review summarizes the recent insights in the field of oncolipid LPA-mediated signaling in regard to lipid metabolism in cancers. Future work in this domain is required to understand the up-regulation of the de novo synthesis pathway and the role of its end products in malignant cells. This will open a new arena of research toward the development of specific metabolic inhibitors that can add to the pre-existing chemotherapeutics in order to increase the efficacy of clinical output in cancer patients.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.