In wireless sensor network (WSN), most of the devices function on batteries. These nodes or devices have inadequate amount of initial energy which are consumed at diverse rates, based on the power level and intended receiver. In sleep scheduling algorithms, most of the sensor nodes are turned to sleep state to preserve energy and improve the network lifetime (NL). In this paper, an energy-efficient dynamic cluster-based protocol is proposed for WSN especially for physics-based applications. Initially, the network is divided into small clusters using adaptive clustering. The clusters are managed by the cluster heads. The cluster heads are elected based on the novel dynamic threshold. Afterwards, general variable neighborhood search is used to obtain the energy-efficient paths for inter-cluster data aggregation which is used to communicate with the sink. The performance of the proposed method is compared with competitive energy-efficient routing protocols in terms of various factors such as stable period, NL, packets sent to base station and packets sent to cluster head. Extensive experiments prove that the proposed protocol provides higher NL than the existing protocols.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.