The keratinocyte cancers (KC), basal cell carcinoma (BCC) and squamous cell carcinoma (SCC) are the most common cancers in fair-skinned people. KC treatment represents the second highest cancer healthcare expenditure in Australia. Increasing our understanding of the genetic architecture of KC may provide new avenues for prevention and treatment. We first conducted a series of genome-wide association studies (GWAS) of KC across three European ancestry datasets from Australia, Europe and USA, and used linkage disequilibrium (LD) Score regression (LDSC) to estimate their pairwise genetic correlations. We employed a multiple-trait approach to map genes across the combined set of KC GWAS (total N = 47 742 cases, 634 413 controls). We also performed meta-analyses of BCC and SCC separately to identify trait specific loci. We found substantial genetic correlations (generally 0.5–1) between BCC and SCC suggesting overlapping genetic risk variants. The multiple trait combined KC GWAS identified 63 independent genome-wide significant loci, 29 of which were novel. Individual separate meta-analyses of BCC and SCC identified an additional 13 novel loci not found in the combined KC analysis. Three new loci were implicated using gene-based tests. New loci included common variants in BRCA2 (distinct to known rare high penetrance cancer risk variants), and in CTLA4, a target of immunotherapy in melanoma. We found shared and trait specific genetic contributions to BCC and SCC. Considering both, we identified a total of 79 independent risk loci, 45 of which are novel.
Previous Mendelian randomization (MR) studies on 25-hydroxyvitamin D (25(OH)D) and cancer have typically adopted a handful of variants and found no relationship between 25(OH)D and cancer; however, issues of horizontal pleiotropy cannot be reliably addressed. Using a larger set of variants associated with 25(OH)D (74 SNPs, up from 6 previously), we perform a unified MR analysis to re-evaluate the relationship between 25(OH)D and ten cancers. Our findings are broadly consistent with previous MR studies indicating no relationship, apart from ovarian cancers (OR 0.89; 95% C.I: 0.82 to 0.96 per 1 SD change in 25(OH)D concentration) and basal cell carcinoma (OR 1.16; 95% C.I.: 1.04 to 1.28). However, after adjustment for pigmentation related variables in a multivariable MR framework, the BCC findings were attenuated. Here we report that lower 25(OH)D is unlikely to be a causal risk factor for most cancers, with our study providing more precise confidence intervals than previously possible.
Melanoma is the deadliest form of skin cancer, mainly affecting populations of European ancestry. Some observational studies suggest that particular diets reduce melanoma risk, putatively through an increase in polyunsaturated fatty acid (PUFA) consumption. However, interpretation of these observational findings is difficult due to residual confounding or reverse causality. To date, a randomized controlled trial has not been carried out to examine the relationship between PUFAs and melanoma. Hence, we performed a Mendelian randomisation (MR) study to evaluate the link between PUFAs and melanoma. To perform MR, we used summary results from the largest risk genome-wide association study (GWAS) meta-analysis of melanoma, consisting of 12,874 cases and 23,203 controls. As instrumental variables we selected SNPs associated with PUFA levels from a GWAS meta-analysis of PUFA levels, from the CHARGE consortium. We used the inverse variance weighted method to estimate a causal odds ratio. To aid interpretation, we established a benchmark "large" predicted change in PUFAs in which, for example, an increase in docosahexaenoic acid (DPA) of 0.17 units (equal to 1 standard deviation) moves a person from the 17 percentile to the median. Raising PUFA levels by a large amount (increasing DPA by 0.17 units) only negligibly changed melanoma risk: odds ratio [OR] = 1.03 (95% confidence interval [CI] = 0.96-1.10). Other PUFAs yielded similar results as DPA. Our MR analysis suggests that the effect of PUFA levels on melanoma risk is either zero or very small.
Background: Observational studies evaluating the link between polyunsaturated fatty acids (PUFA) and cancers have yielded mixed findings. We used Mendelian randomization (MR) to evaluate whether genetic evidence supports a causal role for PUFAs on overall cancer outcomes.Methods: We identified genetic instruments for six PUFAs from previous literature and evaluated their association with overall cancer risk (46,155 cases, 270,342 controls) and cancer mortality (6,998 deaths, 270,342 controls) among the UK Biobank cohort. We used the inverse variance weighted model to combine SNP estimates, and derived log (OR) estimates per SD change in each PUFA.Results: None of the six PUFAs showed association with overall cancer risk or mortality, with narrow confidence interval (CI) ruling out all but very small effects, for example, arachidonic acid (AA) overall cancer risk (OR, 1.02; 95% CI, 1.00-1.03). Sex-specific analysis revealed no associations except a-linolenic acid for potentially reducing cancer risk in men (OR, 0.92; 95% CI, 0.86-0.98; P ¼ 0.02); however, this was nonsignificant after multiple testing correction. From individual cancers, only colorectal cancer showed evidence for a causal association for higher AA levels (OR, 1.05; 95% CI, 1.03-1.07), with similar results for the other correlated PUFAs.Conclusions: Our study provides no support for the hypothesis that PUFAs reduce overall cancer risk or mortality. Higher AA levels increased the risk for colorectal cancer.Impact: Our well-powered MR study provides robust causal inferences for the PUFAs on overall cancer risk and mortality. Future larger studies are warranted to replicate the individual cancer findings.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.