A new rhodamine-based receptor, derivatized with an additional fluorophore (quinoline), was synthesized for selective recognition of Hg(2+) and Cr(3+) in an acetonitrile/HEPES buffer medium of pH 7.3. This reagent could be used as a dual probe and allowed detection of these two ions by monitoring changes in absorption and the fluorescence spectral pattern. In both instances, the extent of the changes was significant enough to allow visual detection. More importantly, the receptor molecule could be used as an imaging reagent for detection of Hg(2+) and Cr(3+) uptake in live human cancer cells (MCF7) using laser confocal microscopic studies. Unlike Hg(ClO(4))(2) or Hg(NO(3))(2) salts, HgCl(2) or HgI(2) failed to induce any visually detectable change in color or fluorescence upon interaction with L(1) under identical experimental conditions. Presumably, the higher covalent nature of Hg(II) in HgCl(2) or HgI(2) accounts for its lower acidity and its inability to open up the spirolactam ring of the reagent L(1). The issue has been addressed on the basis of the single-crystal X-ray structures of L(1)·HgX(2) (X(-) = Cl(-) or I(-)) and results from other spectral studies.
Two new Ru(II)−/Os(II)−polypyridyl based sensitizer dyes with geminal dicarboxylic acid group as the binding unit for superior grafting of the dye to TiO 2 have been designed and synthesized. Steady-state photochemical studies of the two sensitizer dyes in presence of TiO 2 in water confirm strong binding of the dyes to TiO 2 . Femtosecond transient absorption studies of these newly synthesized dyes on TiO 2 nanosurface have been carried out in water and the results have been compared with those for the corresponding 4,4′-dicarboxy-2,2′-bipyridine analogues of the dyes. While the charge recombination rates are considerably slower, interestingly, the electron injection rates are very fast for multiple saturated C−C linkages present between the chromophoric core and the anchoring moiety. The origin and the consequences of such profound effects on the ultrafast interfacial dynamics are discussed. This is the first report on the ultrafast transient absorption studies of dyes with geminal dicarboxylic acid binding groups, which we believe will add significantly to the present research efforts toward the development of robust and efficient dyes for use in dye solar applications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.