Ebselen is a synthetic, lipid-soluble seleno-organic compound. The high electrophilicity of ebselen enables it to react with multiple cysteine residues of various proteins. Despite extensive research on ebselen, its target molecules and mechanism of action remains less understood. We performed biochemical as well as in vivo experiments employing budding yeast as a model organism to understand the mode of action of ebselen. The growth curve analysis and FACS (florescence activated cell sorting) assays revealed that ebselen exerts growth inhibitory effects on yeast cells by causing a delay in cell cycle progression. We observed that ebselen exposure causes an increase in intracellular ROS levels and mitochondrial membrane potential, and that these effects were reversed by addition of antioxidants such as reduced glutathione (GSH) or N-acetyl-l-cysteine (NAC). Interestingly, a significant increase in ROS levels was noticed in gdh3-deleted cells compared to wild-type cells. Furthermore, we showed that ebselen inhibits GDH function by interacting with its cysteine residues, leading to the formation of inactive hexameric GDH. Two-dimensional gel electrophoresis revealed protein targets of ebselen including CPR1, the yeast homolog of Cyclophilin A. Additionally, ebselen treatment leads to the inhibition of yeast sporulation. These results indicate a novel direct connection between ebselen and redox homeostasis.
Desmostachya bipinnata Stapf (Poaceae/Gramineae) is an official drug of ayurvedic pharmacopoeia. Various parts of this plant were used extensively in traditional and folklore medicine to cure various human ailments. The present study was aimed to evaluate the antioxidant and DNA damage protection activity of hydroalcoholic extract of Desmostachya bipinnata both in vitro and in vivo, to provide scientific basis for traditional usage of this plant. The extract showed significant antioxidant activity in a dose-dependent manner with an IC50 value of 264.18 ± 3.47 μg/mL in H2O2 scavenging assay and prevented the oxidative damage to DNA in presence of DNA damaging agent (Fenton's reagent) at a concentration of 50 μg/mL. Also, the presence of extract protected yeast cells in a dose-dependent manner against DNA damaging agent (Hydroxyurea) in spot assay. Moreover, the presence of extract exhibited significant antioxidant activity in vivo by protecting yeast cells against oxidative stressing agent (H2O2). Altogether, the results of current study revealed that Desmostachya bipinnata is a potential source of antioxidants and lends pharmacological credence to the ethnomedical use of this plant in traditional system of medicine, justifying its therapeutic application for free-radical-induced diseases.
Curcumin, a naturally occurring polyphenolic compound, is known to possess diverse pharmacological properties. There is a scarcity of literature documenting the exact mechanism by which curcumin modulates its biological effects. In the present study, we have used yeast as a model organism to dissect the mechanism underlying the action of curcumin. We found that the yeast mutants of histone proteins and chromatin modifying enzymes were sensitive to curcumin and further supplementation of iron resulted in reversal of the changes induced by curcumin. Additionally, treatment of curcumin caused the iron starvation induced expression of FET3, FRE1 genes. We also demonstrated that curcumin induces degradation of Sml1p, a ribonucleotide reductase inhibitor involved in regulating dNTPs production. The degradation of Sml1p was mediated through proteasome and vacuole dependent protein degradation pathways. Furthermore, curcumin exerts biological effect by altering global proteome profile without affecting chromatin architecture. These findings suggest that the medicinal properties of curcumin are largely contributed by its cumulative effect of iron starvation and epigenetic modifications.
Gene expression is a multi-step process which requires recruitment of several factors to promoters. One of the factors, Sen1p is an RNA/DNA helicase implicated in transcriptional termination and RNA processing in yeast. In the present study, we have identified a novel function of Sen1p that regulates the expression of ribonucleotide reductase RNR1 gene, which is essential for maintaining genomic integrity. Cells with mutation in the helicase domain or lacking N-terminal domain of Sen1p displayed a drastic decrease in the basal level transcription of RNR1 gene and showed enhanced sensitivity to various DNA damaging agents. Moreover, SEN1 mutants [Sen1-1 (G1747D), Sen1-2 (Δ1-975)] exhibited defects in DNA damage checkpoint activation. Surprisingly, CRT1 deletion in Sen1p mutants (Sen1-1, Sen1-2) was partly able to rescue the slow growth phenotype upon genotoxic stress. Altogether, our observations suggest that Sen1p is required for cell protection against DNA damage by regulating the expression of DNA repair gene RNR1. Thus, the misregulation of Sen1p regulated genes can cause genomic instability that may lead to neurological disorders and premature aging.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.