Interest in drugs that covalently modify their target is driven by the desire for enhanced efficacy that can result from the silencing of enzymatic activity until protein resynthesis can occur, along with the potential for increased selectivity by targeting uniquely positioned nucleophilic residues in the protein. However, covalent approaches carry additional risk for toxicities or hypersensitivity reactions that can result from covalent modification of unintended targets. Here we describe methods for measuring the reactivity of covalent reactive groups (CRGs) with a biologically relevant nucleophile, glutathione (GSH), along with kinetic data for a broad array of electrophiles. We also describe a computational method for predicting electrophilic reactivity, which taken together can be applied to the prospective design of thiol-reactive covalent inhibitors.
ABSTRACT:Identification and quantification of the metabolites of drugs and drug candidates are routinely performed using liquid chromatography-mass spectrometry (LC-MS). The best practice is to generate a standard curve with the metabolite versus the internal standard. However, to avoid the difficulties in metabolite synthesis, standard curves are sometimes prepared using the substrate, assuming that the signal for substrate and the metabolite will be equivalent. We have tested the errors associated with this assumption using a series of very similar compounds that undergo common metabolic reactions using both conventional flow electrospray ionization LC-MS and low-flow captive spray ionization (CSI) LC-MS. The differences in standard curves for four different types of transformations (O-demethylation, N-demethylation, aromatic hydroxylation, and benzylic hydroxylation) are presented. The results demonstrate that the signals of the substrates compared with those of the metabolites are statistically different in 18 of the 20 substrate-metabolite combinations for both methods. The ratio of the slopes of the standard curves varied up to 4-fold but was slightly less for the CSI method.
The metabolic stability of a drug is an important property that should be optimized during drug design and development. Nitrogen incorporation is hypothesized to increase the stability by coordination of nitrogen to the heme iron of cytochrome P450, a binding mode that is referred to as type II binding. However, we noticed that the type II binding compound 1 has less metabolic stability at subsaturating conditions than a closely related type I binding compound 3. Three kinetic models will be presented for type II binder metabolism; 1) Dead-end type II binding, 2) a rapid equilibrium between type I and II binding modes before reduction, and 3) a direct reduction of the type II coordinated heme. Data will be presented on reduction rates of iron, the off rates of substrate (using surface plasmon resonance) and the catalytic rate constants. These data argue against the dead-end, and rapid equilibrium models, leaving the direct reduction kinetic mechanism for metabolism of the type II binding compound 1.
Despite several advantages of covalent inhibitors (such as increased biochemical efficiency, longer duration of action on the target, and lower efficacious doses) over their reversible binding counterparts, there is a reluctance to use covalent inhibitors as a drug design strategy in pharmaceutical research. This reluctance is due to their anticipated reactions with nontargeted macromolecules. We hypothesized that there may be a threshold limit for nonspecific covalent binding, below which a covalent binding drug may be less likely to cause toxicity due to irreversible binding to off-target macromolecules. Estimation of in vivo covalent binding burden from in vitro data has previously been used as an approach to distinguish those agents more likely to cause toxicity (e.g., hepatotoxicity) via metabolic activation to reactive metabolites. We have extended this approach to nine covalent binding drugs to determine in vitro covalent binding burden. In vitro covalent binding burden was determined by incubating radiolabeled drugs with pooled human hepatocytes. These data were scaled to an estimate of in vivo covalent binding burden by combining the in vitro data with daily dose. Scaled in vivo daily covalent binding burden of marketed covalent drugs was found to be under 10 mg/day, which is in agreement with previously reported threshold value for metabolically activated reversible drugs. Covalent binding was also compared to the intrinsic reactivities of the covalent inhibitors assessed using nucleophiles glutathione and N-α-acetyl lysine. The intrinsic reactivity did not correlate with observed in vitro covalent binding, which demonstrated that the intrinsic reactivity of the electrophilic groups of covalent drugs does not exclusively account for the extent of covalent binding. The ramifications of these findings for consideration of using a covalent strategy in drug design are discussed.
Covalent drugs contain a reactive electrophilic moiety or covalent reactive group (CRG), which forms an irreversible bond between the drug and a biological target.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.