Most mobile devices nowadays can simultaneously connect to different access networks with different characteristics at different times. Most solutions proposed for such an environment are reactive in nature. For example, when networks are encountered, the device performs a vertical handover to the network that offers the highest bandwidth. But the cost of handover may not be justified if that network is only available for a short time. Knowledge of future network availability and its capabilities would help to proactively handle the handover process more intelligently. Network availability prediction is often addressed as user path predictions with network coverage maps. In contrast, we model it as a more robust context prediction problem that can use any of the available context variables like GSM cell ID, WLAN AP, whether the power cable plugged, number of people around etc.Specifically, we propose a Semi-Markovian context prediction model to predict WLAN availability. As collecting and processing context consumes power, we propose a method to rank each context variable according to their contributions to prediction accuracy. We also employ the same method for optimizing model parameters. Real user data collected in our experiments show that when WLAN status is static, prediction errors are nearly zero and even in changing environments, error is less than 26% on average and the obtained context variable ranking is realistic.
KeywordsNetwork Availability Prediction, Context Prediction, Semi Markov Model
•We model availability prediction as a robust, context sensor agnostic prediction problem which uses any available context information like GSM cell IDs, Wi-Fi AP presence, whether LAN is connected, whether Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.