Endosomal TLRs play an important role in innate immune response as well as in autoimmune processes. In the therapy of systemic lupus erythematosus, antimalarial drugs chloroquine, hydroxychloroquine, and quinacrine have been used for a long time. Their suppression of endosomal TLR activation has been attributed to the inhibition of endosomal acidification, which is a prerequisite for the activation of these receptors. We discovered that chloroquine inhibits only activation of endosomal TLRs by nucleic acids, whereas it augments activation of TLR8 by a small synthetic compound, R848. We detected direct binding of antimalarials to nucleic acids by spectroscopic experiments and determined their cellular colocalization. Further analysis revealed that other nucleic acidbinding compounds, such as propidium iodide, also inhibited activation of endosomal TLRs and colocalized with nucleic acids to endosomes. We found that imidazoquinolines, which are TLR7/8 agonists, inhibit TLR9 and TLR3 even in the absence of TLR7 or TLR8, and their mechanism of inhibition is similar to the antimalarials. In contrast to bafilomycin, none of the tested antimalarials and imidazoquinolines inhibited endosomal proteolysis or increased the endosomal pH, confirming that inhibition of pH acidification is not the underlying cause of inhibition. We conclude that the direct binding of inhibitors to nucleic acids mask their TLRbinding epitope and may explain the efficiency of those compounds in the treatment of autoimmune diseases.
The dendritic cell-specific intercellular adhesion molecule-3-grabbing non-integrin (DC-SIGN) is a type II C-type lectin whose expression is restricted to the most potent antigen-presenting cells (APCs), the dendritic cells (DCs). In recent years, DC-SIGN has gained an exponential increase in attention because of its involvement in multiple aspects of immune function. Besides being an adhesion molecule, particularly in binding ICAM-2 and ICAM-3, it is also crucial in recognizing several endogenous and exogenous antigens. Additionally, the intracellular domain of DC-SIGN includes molecular motifs, which enable the activation of signal transduction pathways involving Raf-1 and subsequent modulation of DC-maturation status, through direct modification of nuclear factor Nf-kappaB in DCs. Upon DC-SIGN engagement by mannose- or fucose-containing oligosaccharides, the latter leads to a tailored Toll-like receptor signalling, resulting in an altered DC-cytokine profile and skewing of Th1/Th2 responses. In this article, we will discuss recent advances on a broad perspective concerning DC-SIGN structure, signalling and immune function.
BackgroundIn immune-mediated diseases of the central nervous system, astrocytes exposed to interferon-γ (IFN-γ) can express major histocompatibility complex (MHC) class II molecules and antigens on their surface. MHC class II molecules are thought to be delivered to the cell surface by membrane-bound vesicles. However, the characteristics and dynamics of this vesicular traffic are unclear, particularly in reactive astrocytes, which overexpress intermediate filament (IF) proteins that may affect trafficking. The aim of this study was to determine the mobility of MHC class II vesicles in wild-type (WT) astrocytes and in astrocytes devoid of IFs.MethodsThe identity of MHC class II compartments in WT and IF-deficient astrocytes 48 h after IFN-γ activation was determined immunocytochemically by using confocal microscopy. Time-lapse confocal imaging and Alexa Fluor546-dextran labeling of late endosomes/lysosomes in IFN-γ treated cells was used to characterize the motion of MHC class II vesicles. The mobility of vesicles was analyzed using ParticleTR software.ResultsConfocal imaging of primary cultures of WT and IF-deficient astrocytes revealed IFN-γ induced MHC class II expression in late endosomes/lysosomes, which were specifically labeled with Alexa Fluor546-conjugated dextran. Live imaging revealed faster movement of dextran-positive vesicles in IFN-γ-treated than in untreated astrocytes. Vesicle mobility was lower in IFN-γ-treated IF-deficient astrocytes than in WT astrocytes. Thus, the IFN-γ-induced increase in the mobility of MHC class II compartments is IF-dependent.ConclusionsSince reactivity of astrocytes is a hallmark of many CNS pathologies, it is likely that the up-regulation of IFs under such conditions allows a faster and therefore a more efficient delivery of MHC class II molecules to the cell surface. In vivo, such regulatory mechanisms may enable antigen-presenting reactive astrocytes to respond rapidly and in a controlled manner to CNS inflammation.
A molecule with a relatively simple chemical structure, resveratrol has been found to interact with multiple molecular targets, many of them associated with inflammation and immunity. Indeed, it has been shown to act directly on central players of both innate and adaptive immunity, such as macrophages, lymphocytes, and dendritic cells. In addition, there is very little evidence suggesting significant deleterious side effects of resveratrol, further highlighting its potential future use as a therapeutic agent. This review provides an up-to-date discussion on recent advances regarding anti-inflammatory effects of resveratrol, mechanisms of action, and its potential for therapeutic use.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.