The first chemical method for selective dual sp(3) C-H functionalization at the alpha-and beta positions of cyclic amines to their corresponding 3-alkoxyamine lactams is reported. Unlike traditional Cα-H oxidation of amines to amides mediated by transition metals, the present protocol, which involves the use of NaClO2/TEMPO/NaClO in either aqueous or organic solvent, not only allows the Cα-H oxidation but also the subsequent functionalization of the unreactive β-methylene group in an unprecedented tandem fashion and using environmentally friendly reactants.
By using cheap and innocuous reagents, such as NaClO 2 , NaOCl, and catalytic amounts of TEMPO, a new environmentally friendly protocol for the selective and catalytic TEMPO C(sp 3 )−H oxidation of piperazines and morpholines to 2,3-diketopiperazines (2,3-DKP) and 3morpholinones (3-MPs), respectively, has been developed. This novel direct access to 2,3-DKP from piperazines provides significant advantages over the traditional N-monoacylation/ intramolecular C−N cyclization procedure. Additionally, by modulating the amounts of TEMPO, 2-alkoxyamino-3morpholinone can be prepared from morpholine derivatives, which would enable further functionalization at the C2 position of the morpholine skeleton.
The substrate-controlled asymmetric total synthesis and absolute configurational assignment of biologically active 3α,4α-epoxy-5β-pipermethystine, a minor component in the aerial parts of kava, has been achieved by featuring, as a key step, the environmentally friendly and direct synthesis of 2,3-epoxyamides from allyl amines. By using the chiron approach, first a carbohydrate-derived dehydropiperidine was prepared and subjected to a stereoselective tandem C-H/C[double bond, length as m-dash]C oxidation reaction. In this attempt, the required α,α-trans-epoxy-2-piperidone skeleton of the kava metabolite precursor was not achieved, although the tandem oxidation was highly stereoselective. However, starting from non-carbohydrate 3-hydroxy-4,5-dehydropiperidine, and using the same tandem oxidation, the target intermediate was obtained in high yield and complete unprecedented anti-stereoselectivity. Since the proposed mechanistic course of this tandem oxidation implies the transient formation of an α,β-unsaturated amide followed by the subsequent epoxidation reaction, this second approach supports the previously established biotransformation proposal of (-)-pipermethystine to (-)-3α,4α-epoxy-5β-pipermethystine.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.