Phosphatidylinositol 4,5-bisphosphate [PI(4,5)P2] is a multi-functional lipid that regulates several essential subcellular processes in eukaryotic cells. In addition to its well-established function as a substrate for receptor-activated signalling at the plasma membrane (PM), it is now recognized that distinct PI(4,5)P2 pools are present at other organelle membranes. However, a long-standing question that remains unresolved is the mechanism by which a single lipid species, with an invariant functional head group, delivers numerous functions without loss of fidelity. In the present review, we summarize studies that have examined the molecular processes that shape the repertoire of PI(4,5)P2 pools in diverse eukaryotes. Collectively, these studies indicate a conserved role for lipid kinase isoforms in generating functionally distinct pools of PI(4,5)P2 in diverse metazoan species. The sophistication underlying the regulation of multiple functions by PI(4,5)P2 is also shaped by mechanisms that regulate its availability to enzymes involved in its metabolism as well as molecular processes that control its diffusion at nanoscales in the PM. Collectively, these mechanisms ensure the specificity of PI(4,5)P2 mediated signalling at eukaryotic membranes.
The activation of phospholipase C (PLC) is a conserved mechanism of receptor-activated cell signaling at the plasma membrane. PLC hydrolyzes the minor membrane lipid phosphatidylinositol 4,5-bisphosphate [PI(4,5)P], and continued signaling requires the resynthesis and availability of PI(4,5)P at the plasma membrane. PI(4,5)P is synthesized by the phosphorylation of phosphatidylinositol 4-phosphate (PI4P). Thus, a continuous supply of PI4P is essential to support ongoing PLC signaling. While the enzyme PI4KA has been identified as performing this function in cultured mammalian cells, its function in the context of an physiological model has not been established. In this study, we show that, in photoreceptors, PI4KIIIα activity is required to support signaling during G-protein-coupled PLC activation. Depletion of PI4KIIIα results in impaired electrical responses to light, and reduced plasma membrane levels of PI4P and PI(4,5)P Depletion of the conserved proteins Efr3 and TTC7 [also known as StmA and L(2)k14710, respectively, in flies], which assemble PI4KIIIα at the plasma membrane, also results in an impaired light response and reduced plasma membrane PI4P and PI(4,5)P levels. Thus, PI4KIIIα activity at the plasma membrane generates PI4P and supports PI(4,5)P levels during receptor activated PLC signaling.
Phosphoinositides are lipid signaling molecules that regulate several conserved sub-cellular processes in eukaryotes, including cell growth. Phosphoinositides are generated by the enzymatic activity of highly specific lipid kinases and phosphatases. For example, the lipid PIP3, the Class I PI3 kinase that generates it and the phosphatase PTEN that metabolizes it are all established regulators of growth control in metazoans. To identify additional functions for phosphoinositides in growth control, we performed a genetic screen to identify proteins which when depleted result in altered tissue growth. By using RNA-interference mediated depletion coupled with mosaic analysis in developing eyes, we identified and classified additional candidates in the developing Drosophila melanogaster eye that regulate growth either cell autonomously or via cell-cell interactions. We report three genes: Pi3K68D, Vps34 and fwd that are important for growth regulation and suggest that these are likely to act via cell-cell interactions in the developing eye. Our findings define new avenues for the understanding of growth regulation in metazoan tissue development by phosphoinositide metabolizing proteins.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.