BackgroundRecent evidence suggests that impaired central sensorimotor integration may contribute to deficits in movement control experienced by people with chronic ankle instability (CAI). This study compared the effects of dual-task and walking speed on gait variability in individuals with and without CAI.MethodsSixteen subjects with CAI and 16 age- and gender-matched, able-bodied controls participated in this study. Stride time variability and stride length variability were measured on a treadmill under four different conditions: self-paced walking, self-paced walking with dual-task, fast walking, and fast walking with dual-task.ResultsUnder self-paced walking (without dual-task) there was no difference in stride time variability between CAI and control groups (P = 0.346). In the control group, compared to self-paced walking, stride time variability decreased in all conditions: self-paced walking with dual-task, fast speed, and fast speed with dual-task (P = 0.011, P = 0.016, P = 0.001, respectively). However, in the CAI group, compared to self-paced walking, decreased stride time variability was demonstrated only in the fast speed with dual-task condition (P = 1.000, P = 0.471, P = 0.008; respectively). Stride length variability did not change under any condition in either group.ConclusionsSubjects with CAI and healthy controls reduced their stride time variability in response to challenging walking conditions; however, the pattern of change was different. A higher level of gait disturbance was required to cause a change in walking in the CAI group compared to healthy individuals, which may indicate lower adaptability of the sensorimotor system. Clinicians may use this information and employ activities to enhance sensorimotor control during gait, when designing intervention programs for people with CAI.The study was registered with the Clinical Trials network (registration NCT02745834, registration date 15/3/2016).
The study objective was to determine whether spatiotemporal gait parameters could predict lower-limb overuse injuries in cohort of combat soldiers during first year of military service. Newly recruited infantry soldiers walked on a treadmill at a 15° incline with a fixed speed of 1.67 m/sec while wearing a standard military vest with a 10 kg load. Stride time variability, stride length variability, step length asymmetry, and the duration of the loading response phase of the gait cycle were measured. Injury data on 76 soldiers who did not report musculoskeletal complaints at initial screening were collected one year after recruitment. Multiple logistic regression analyses were conducted to determine the predictive effect of the gait parameters on lower-limb injuries. Twenty-four soldiers (31.6%) had overuse injuries during the first year after recruitment. Duration of the loading response was a significant predictor of general lower-limb injury (p < 0.05), as well as of foot/ankle and knee injuries (p < 0.05, p < 0.01, resp.). A cutoff value of less than 12.15% for loading response duration predicted knee injuries with 83% sensitivity and 67% specificity. This study demonstrates the utility of spatiotemporal gait evaluation, a simple screening tool before military training, which may help to identify individuals at risk of lower-limb overuse injuries.
Chronic ankle instability (CAI) is a common condition that may develop after an ankle sprain. Compared with healthy individuals, those with CAI demonstrate excessive ankle inversion and increased peroneal electromyography (EMG) activity throughout the stance phase of gait, which may put them at greater risk for re-injury. Functional electrical stimulation (FES) of targeted muscles may provide benefits as a treatment modality to stimulate immediate adaptation of the neuromuscular system. The present study investigated the effect of a single, 10 min peroneal FES session on ankle kinematics and peroneal EMG activity in individuals with (n = 24) or without (n = 24) CAI. There were no significant differences in ankle kinematics between the groups before the intervention. However, after the intervention, healthy controls demonstrated significantly less ankle inversion between 0–9% (p = 0.009) and 82–87% (p = 0.011) of the stance phase. Furthermore, a significant within-group difference was observed only in the control group, demonstrating increased ankle eversion between 0–7% (p = 0.011) and 67–81% (p = 0.006) of the stance phase after the intervention. Peroneal EMG activity did not differ between groups or measurements. These findings, which demonstrate that peroneal FES can induce ankle kinematics adaptations during gait, can help to develop future interventions for people with CAI.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.