BackgroundIdentification of specific genes and gene expression patterns important for bacterial survival, transmission and pathogenesis is critically needed to enable development of more effective pathogen control strategies. The stationary phase stress response transcriptome, including many σB-dependent genes, was defined for the human bacterial pathogen Listeria monocytogenes using RNA sequencing (RNA-Seq) with the Illumina Genome Analyzer. Specifically, bacterial transcriptomes were compared between stationary phase cells of L. monocytogenes 10403S and an otherwise isogenic ΔsigB mutant, which does not express the alternative σ factor σB, a major regulator of genes contributing to stress response, including stresses encountered upon entry into stationary phase.ResultsOverall, 83% of all L. monocytogenes genes were transcribed in stationary phase cells; 42% of currently annotated L. monocytogenes genes showed medium to high transcript levels under these conditions. A total of 96 genes had significantly higher transcript levels in 10403S than in ΔsigB, indicating σB-dependent transcription of these genes. RNA-Seq analyses indicate that a total of 67 noncoding RNA molecules (ncRNAs) are transcribed in stationary phase L. monocytogenes, including 7 previously unrecognized putative ncRNAs. Application of a dynamically trained Hidden Markov Model, in combination with RNA-Seq data, identified 65 putative σB promoters upstream of 82 of the 96 σB-dependent genes and upstream of the one σB-dependent ncRNA. The RNA-Seq data also enabled annotation of putative operons as well as visualization of 5'- and 3'-UTR regions.ConclusionsThe results from these studies provide powerful evidence that RNA-Seq data combined with appropriate bioinformatics tools allow quantitative characterization of prokaryotic transcriptomes, thus providing exciting new strategies for exploring transcriptional regulatory networks in bacteria.See minireivew http://jbiol.com/content/8/12/107.
Large-scale comparison of genomic DNA is of fundamental importance in annotating functional elements of genomes. other widely used tools use seeded alignment, which compares only sequences that can be shown to share a common pattern or "seed'' of matching bases. The literature suggests that the choice of seed substantially affects the sensitivity of seeded alignment, but designing and evaluating seeds is computationally challenging.This work addresses the problem of designing a seed to optimize performance of seeded alignment. We give a fast, simple algorithm based on finite automata for evaluating the sensitivity of a seed in a Markov model of ungapped alignments, along with extensions to mixtures and inhomogeneous Markov models. We give intuition and theoretical results on which seeds are good choices. Finally, we describe Mandala, a software tool for seed design, and show that it can be used to improve the sensitivity of alignment in practice.
The target-decoy approach (TDA) has done the field of proteomics a great service by filling in the need to estimate the false discovery rates (FDR) of peptide identifications. While TDA is often viewed as a universal solution to the problem of FDR evaluation, we argue that the time has come to critically re-examine TDA and to acknowledge not only its merits but also its demerits. We demonstrate that some popular MS/MS search tools are not TDA-compliant and that it is easy to develop a non-TDA compliant tool that outperforms all TDA-compliant tools. Since the distinction between TDA-compliant and non-TDA compliant tools remains elusive, we are concerned about a possible proliferation of non-TDA-compliant tools in the future (developed with the best intentions). We are also concerned that estimation of the FDR by TDA awkwardly depends on a virtual coin toss and argue that it is important to take the coin toss factor out of our estimation of the FDR. Since computing FDR via TDA suffers from various restrictions, we argue that TDA is not needed when accurate p-values of individual Peptide-Spectrum Matches are available.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.