Taken together with emerging results in both visual and other auditory areas, these findings suggest that neurons whose responses reflect complex interactions between stimulus position and eye position set the stage for the eventual convergence of auditory and visual information.
Is sound location represented in the auditory cortex of humans and monkeys? Human neuroimaging experiments have had only mixed success at demonstrating sound location sensitivity in primary auditory cortex. This is in apparent conflict with studies in monkeys and other animals, in which single-unit recording studies have found stronger evidence for spatial sensitivity. Does this apparent discrepancy reflect a difference between humans and animals, or does it reflect differences in the sensitivity of the methods used for assessing the representation of sound location? The sensitivity of imaging methods such as functional magnetic resonance imaging depends on the following two key aspects of the underlying neuronal population: (1) what kind of spatial sensitivity individual neurons exhibit and (2) whether neurons with similar response preferences are clustered within the brain.To address this question, we conducted a single-unit recording study in monkeys. We investigated the nature of spatial sensitivity in individual auditory cortical neurons to determine whether they have receptive fields (place code) or monotonic (rate code) sensitivity to sound azimuth. Second, we tested how strongly the population of neurons favors contralateral locations. We report here that the majority of neurons show predominantly monotonic azimuthal sensitivity, forming a rate code for sound azimuth, but that at the population level the degree of contralaterality is modest. This suggests that the weakness of the evidence for spatial sensitivity in human neuroimaging studies of auditory cortex may be attributable to limited lateralization at the population level, despite what may be considerable spatial sensitivity in individual neurons.
Visual processing shows a highly distributed organization in which the presentation of a visual stimulus simultaneously activates neurons in multiple columns across several cortical areas. It has been suggested that precise spatiotemporal activity patterns within and across cortical areas play a key role in higher cognitive, motor, and visual functions. In the visual system, these patterns have been proposed to take part in binding stimulus features into a coherent object, i.e., to be involved in perceptual grouping. Using voltagesensitive dye imaging (VSDI) in behaving monkeys (Macaca fascicularis, males), we simultaneously measured neural population activity in the primary visual cortex (V1) and extrastriate cortex (V2, V4) at high spatial and temporal resolution. We detected time point population events (PEs) in the VSDI signal of each pixel and found that they reflect transient increased neural activation within local populations by establishing their relation to spiking and local field potential activity. Then, we searched for repeating space and time relations between the detected PEs. We demonstrate the following: (1) spatiotemporal patterns occurring within (horizontal) and across (vertical) early visual areas repeat significantly above chance level; (2) information carried in only a few patterns can be used to reliably discriminate between stimulus categories on a single-trial level; (3) the spatiotemporal patterns yielding high classification performance are characterized by late temporal occurrence and top-down propagation, which are consistent with cortical mechanisms involving perceptual grouping. The pattern characteristics and the robust relation between the patterns and the stimulus categories suggest that spatiotemporal activity patterns play an important role in cortical mechanisms of higher visual processing.
Collinear proximal flankers can facilitate the detection of a low-contrast target or generate false-alarm target detection in the absence of a target. Although these effects are known to involve subthreshold neuronal interactions beyond the classical receptive field, the underlying neuronal mechanisms are not fully understood. Here, we used voltage-sensitive dye imaging that emphasizes subthreshold population activity, at high spatial and temporal resolution and imaged the visual cortex of fixating monkeys while they were presented with a low-contrast Gabor target, embedded within collinear or orthogonal flankers. We found that neuronal activity at the target site in area primary visual cortex increased and response latency decreased due to spatial spread of activation from the flankers' site. This increased activity was smaller than expected by a linear summation. The presentation of flankers alone induced strong spatial filling-in at the target site. Importantly, the increased neuronal activity at the target site was synchronized over time, both locally and with neuronal population at the flanker's site. This onset synchronization was higher for collinear than for orthogonal flankers. We further show that synchrony is a superior code over amplitude, for discriminating collinear from orthogonal pattern. These results suggest that population synchrony can serve as a code to discriminate contextual effects.
It is widely accepted that Beta-band oscillations play a role in sensorimotor behavior. To further explore this role, we developed a hybrid platform to combine neural operant conditioning and phase-specific intracortical microstimulation (ICMS). We trained monkeys, implanted with 96 electrode arrays in the motor cortex, to volitionally enhance local field potential (LFP) Beta-band (20-30 Hz) activity at selected sites using a brain-machine interface. We find that Beta oscillations of LFP and single-unit spiking activity increase dramatically with brain-machine interface training and that pre-movement Beta power is anti-correlated with task performance. We also find that phase-specific ICMS modulates the power and phase of oscillations, shifting local networks between oscillatory and non-oscillatory states. Furthermore, ICMS induces phase-dependent effects in animal reaction times and success rates. These findings contribute to unraveling the functional role of cortical oscillations and to the future development of clinical tools for ameliorating abnormal neuronal activities in brain disease.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.