The hygroscopic growth of aerosols is controlled by the relative humidity (RH) and changes the aerosols' physical and hence optical properties. Observational studies of aerosol-cloud interactions evaluate the aerosol concentration using optical parameters, such as the aerosol optical depth (AOD), which can be affected by aerosol humidification. In this study we evaluate the RH background and variance values, in the lower cloudy atmosphere, an additional source of variance in AOD values beside the natural changes in aerosol concentration. In addition, we estimate the bias in RH and AOD, related to cloud thickness. This provides the much needed range of RH-related biases in studies of aerosol-cloud interaction.Twelve years of radiosonde measurements (June-August) in thirteen globally distributed stations are analyzed. The estimated non-biased AOD variance due to day-to-day changes in RH is found to be around 20% and the biases linked to cloud development around 10%. Such an effect is important and should be considered in direct and indirect aerosol effect estimations but it is inadequate to account for most of the AOD trend found in observational studies of aerosol-cloud interactions.
Cirrus clouds are known to play a key role in the climate system, but their overall effect on Earth's radiation budget is not yet fully quantified. The uncertainties are, in part, due to ambiguities in cirrus extent or coverage. Here we show that despite careful filtering of cloudy pixels, cirrus clouds have a clear statistical signature. This signature can be estimated by the proximity to detectable cirrus clouds. Such a residual signature can affect retrievals that rely on a cloud-free atmosphere, such as aerosol optical depth (AOD) or sea surface temperature. Analyzing MODIS raw-data and products, we show a clear increase in the reflectance when approaching detectable cirrus clouds. We estimated a mean increase in AOD of 0.03 ± 0.01 and a decrease in the Angstrom-exponent of −0.22 ± 0.20 in the first kilometer around detectable cirrus. The effect decays tenfold at a typical distance of 5.5 ± 1.8 km. Such trends confirm the contribution of large particles that are likely to be ice crystals to the so-called cloud-free atmosphere near detectable cirrus clouds.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.