The BNT162b2 mRNA vaccine is highly effective against SARS-CoV-2. However, apprehension exists that variants of concern (VOCs) may evade vaccine protection, due to evidence of reduced neutralization of the VOCs B.1.1.7 and B.1.351 by vaccine sera in laboratory assays. We performed a matched cohort study to examine the distribution of VOCs in infections of BNT162b2 mRNA vaccinees from Clalit Health Services (Israel) using viral genomic sequencing, and hypothesized that if vaccine effectiveness against a VOC is reduced, its proportion among breakthrough cases would be higher than in unvaccinated controls. Analyzing 813 viral genome sequences from nasopharyngeal swabs, we showed that vaccinees who tested positive at least 7 days after the second dose were disproportionally infected with B.1.351, compared with controls. Those who tested positive between 2 weeks after the first dose and 6 days after the second dose were disproportionally infected by B.1.1.7. These findings suggest reduced vaccine effectiveness against both VOCs within particular time windows. Our results emphasize the importance of rigorously tracking viral variants, and of increasing vaccination to prevent the spread of VOCs.
At the COVID-19 pandemic onset, when individual-level data of COVID-19 patients were not yet available, there was already a need for risk predictors to support prevention and treatment decisions. Here, we report a hybrid strategy to create such a predictor, combining the development of a baseline severe respiratory infection risk predictor and a post-processing method to calibrate the predictions to reported COVID-19 case-fatality rates. With the accumulation of a COVID-19 patient cohort, this predictor is validated to have good discrimination (area under the receiver-operating characteristics curve of 0.943) and calibration (markedly improved compared to that of the baseline predictor). At a 5% risk threshold, 15% of patients are marked as high-risk, achieving a sensitivity of 88%. We thus demonstrate that even at the onset of a pandemic, shrouded in epidemiologic fog of war, it is possible to provide a useful risk predictor, now widely used in a large healthcare organization.
The SARS-CoV-2 pandemic has been raging for over a year, creating global detrimental impact. The BNT162b2 mRNA vaccine has demonstrated high protection levels, yet apprehension exists that several variants of concerns (VOCs) can surmount the immune defenses generated by the vaccines. Neutralization assays have revealed some reduction in neutralization of VOCs B.1.1.7 and B.1.351, but the relevance of these assays in real life remains unclear. Here, we performed a case-control study that examined whether BNT162b2 vaccinees with documented SARS-CoV-2 infection were more likely to become infected with B.1.1.7 or B.1.351 compared with unvaccinated individuals. Vaccinees infected at least a week after the second dose were disproportionally infected with B.1.351 (odds ratio of 8:1). Those infected between two weeks after the first dose and one week after the second dose, were disproportionally infected by B.1.1.7 (odds ratio of 26:10), suggesting reduced vaccine effectiveness against both VOCs under different dosage/timing conditions. Nevertheless, the B.1.351 incidence in Israel to-date remains low and vaccine effectiveness remains high against B.1.1.7, among those fully vaccinated. These results overall suggest that vaccine breakthrough infection is more frequent with both VOCs, yet a combination of mass-vaccination with two doses coupled with non-pharmaceutical interventions control and contain their spread.
With the global coronavirus disease 2019 (COVID-19) pandemic, there is an urgent need for risk stratification tools to support prevention and treatment decisions. The Centers for Disease Control and Prevention (CDC) listed several criteria that define high-risk individuals, but multivariable prediction models may allow for a more accurate and granular risk evaluation. In the early days of the pandemic, when individual level data required for training prediction models was not available, a large healthcare organization developed a prediction model for supporting its COVID-19 policy using a hybrid strategy. The model was constructed on a baseline predictor to rank patients according to their risk for severe respiratory infection or sepsis (trained using over one-million patient records) and was then post-processed to calibrate the predictions to reported COVID-19 case fatality rates. Since its deployment in mid-March, this predictor was integrated into many decision-processes in the organization that involved allocating limited resources. With the accumulation of enough COVID-19 patients, the predictor was validated for its accuracy in predicting COVID-19 mortality among all COVID-19 cases in the organization (3,176, 3.1% death rate). The predictor was found to have good discrimination, with an area under the receiver-operating characteristics curve of 0.942. Calibration was also good, with a marked improvement compared to the calibration of the baseline model when evaluated for the COVID-19 mortality outcome. While the CDC criteria identify 41% of the population as high-risk with a resulting sensitivity of 97%, a 5% absolute risk cutoff by the model tags only 14% to be at high-risk while still achieving a sensitivity of 90%. To summarize, we found that even in the midst of a pandemic, shrouded in epidemiologic "fog of war" and with no individual level data, it was possible to provide a useful predictor with good discrimination and calibration.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.