In this work, a mathematical description of a Microbial Electrolysis Cell (MEC) is proposed, taking into account the global mass balances of the different species in the system and considering that all the involved microorganisms are attached to the anodic biological film. Three main biological reactions are introduced, which were obtained from the solution of partial differential equations describing the spatial distribution of potential and substrate in the biofilm. The simulation of the model was carried out using numerical methods, and the results are discussed.
The fate and transport of groundwater contaminants depends partially on groundwater velocity, which can vary appreciably in highly stratified aquifers. A high‐resolution passive profiler (HRPP) was developed to evaluate groundwater velocity, contaminant concentrations, and microbial community structure at ∼20 cm vertical depth resolution in shallow heterogeneous aquifers. The objective of this study was to use mass transfer of bromide (Br−), a conservative tracer released from cells in the HRPP, to estimate interstitial velocity. Laboratory experiments were conducted to empirically relate velocity and the mass transfer coefficient of Br− based on the relative loss of Br− from HRPP cells. Laboratory‐scale HRPPs were deployed in flow boxes containing saturated soils with differing porosities, and the mass transfer coefficient of Br− was measured at multiple interstitial velocities (0 to 100 cm/day). A two‐dimensional (2D) quasi‐steady‐state model was used to relate velocity to mass transfer of Br− for a range of soil porosities (0.2–0.5). The laboratory data indicate that the mass transfer coefficient of Br−, which was directly—but non‐linearly—related to velocity, can be determined with a single 3‐week deployment of the HRPP. The mass transfer coefficient was relatively unaffected by sampler orientation, length of deployment time, or porosity. The model closely simulated the experimental results. The data suggest that the HRPP will be applicable for estimating groundwater velocity ranging from 1 to 100 cm/day in the field at a minimum depth resolution of 10 cm, depending on sampler design.
Polydimethylsiloxane solid-phase microextraction passive samplers were used to evaluate long-term performance of a sand/gravel cap placed in 2005 in a tidally influenced shoreline in Puget Sound to reduce polycyclic aromatic hydrocarbon (PAH) transport into overlying surface water. Sampling in both 2010 and 2018 measured porewater concentrations of <1 ng/L total PAHs in the cap layer. d-PAH performance reference compounds were used to evaluate the extent of equilibration of the contaminants onto the samplers and to estimate net upwelling velocities through a mass-transfer model. The upwelling velocities were used to predict long-term migration of selected PAHs through the cap, showing that the cap is expected to continue being effective at limiting exposure of contaminants at the cap–water interface.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.