Natural killer (NK) cells comprise one subset of the innate lymphoid cell (ILC) family. Despite reported antitumor functions of NK cells, their tangible contribution to tumor control in humans remains controversial. This is due to incomplete understanding of the NK cell states within the tumor microenvironment (TME). Here, we demonstrate that peripheral circulating NK cells differentiate down two divergent pathways within the TME, resulting in different end states. One resembles intraepithelial ILC1s (ieILC1) and possesses potent in vivo antitumor activity. The other expresses genes associated with immune hyporesponsiveness and has poor antitumor functional capacity. Interleukin-15 (IL-15) and direct contact between the tumor cells and NK cells are required for the differentiation into CD49a+CD103+ cells, resembling ieILC1s. These data explain the similarity between ieILC1s and tissue-resident NK cells, provide insight into the origin of ieILC1s, and identify the ieILC1-like cell state within the TME to be the NK cell phenotype with the greatest antitumor activity. Because the proportions of the different ILC states vary between tumors, these findings provide a resource for the clinical study of innate immune responses against tumors and the design of novel therapy.
BackgroundNatural killer (NK) cells constitutively express high levels of Tim-3, an immunoregulatory molecule recently proposed to be a marker for mature and functional NK cells. Whether HIV-1 infection modulates the expression of Tim-3 on NK cells, or the levels of its ligand Galectin-9 (Gal-9), and how signaling through these molecules affects the NK cell response to HIV-1 remains inadequately understood.ResultsWe analyzed Tim-3 and Gal-9 expression in a cohort of 85 individuals with early and chronic HIV-1 infection, and in 13 HIV-1 seronegative control subjects. HIV-1 infection was associated with reduced expression of Tim-3 on NK cells, which was normalized by HAART. Plasma concentrations of Gal-9 were higher in HIV-1-infected individuals than in healthy individuals. Interestingly, Gal-9 expression in immune cells was significantly elevated in early infection, with monocytes and dendritic cells displaying the highest expression levels, which correlated with HIV-1 viral loads. In vitro, Gal-9 triggered Tim-3 downregulation on NK cells as well as NK cell activation.ConclusionsOur data suggest that high expression levels of Gal-9 during early HIV-1 infection can lead to enhanced NK cell activity, possibly allowing for improved early control of HIV-1. In contrast, persistent Gal-9 production might impair Tim-3 activity and contribute to NK cell dysfunction in chronic HIV-1 infection.
BackgroundThe reportedly broad expression of CD85j across different immune cell types suggests an importance for this molecule in the human immune system. Previous reports have shown that this receptor interacts with several HLA class-I molecules, as well as with some viral proteins. We have demonstrated that the subset of CD85j + Natural Killer (NK) cells efficiently controls human immunodeficiency virus type 1 (HIV-1) replication in monocyte-derived dendritic cells (MDDC) in vitro and this led us to hypothesize that the CD85j + NK cell-mediated anti-HIV activity in MDDC is specifically dependent on the interaction between the CD85j receptor and unknown non-HLA class-I ligand(s).ResultsIn this study, we focused our efforts on the identification of these non-described ligands for CD85j. We found that the CD85j receptor interacts with a calcium-binding proteins of the S100 family; namely, S100A9. We further demonstrated that HIV-1 infection of MDDC induces a modulation of S100A9 expression on surface of the MDDC, which potentially influences the anti-HIV-1 activity of human NK cells through a mechanism involving CD85j ligation. Additionally, we showed that stimulation of NK cells with exogenous S100A9 enhances the control of HIV-1 infection in CD4+ T cells.ConclusionsOur data show that S100A9 protein, through ligation with CD85j, can stimulate the anti-HIV-1 activity of NK cells.
Human natural killer (NK) cells are divided into two subsets: CD56 and CD56 NK cells, which differ in maturation, function and distribution. Mechanisms regulating NK cell functions are not completely understood. Aryl hydrocarbon receptor (AhR) is a ligand-activated transcription factor, that binds to a variety of endogenous and exogenous molecules, and that has recently been shown to modulate the function and differentiation of immune cells. Here, we studied the expression of AhR and its involvement in the regulation of NK cell functions. We found that AhR mRNA is highly expressed in peripheral CD56 NK cells and that AhR mRNA expression gradually decreases as NK cells display a more mature phenotype. CD56 NK cells were highly sensitive to AhR ligands. Specifically, AhR ligands modulated their activation and their expression of NK cell receptors, as well as cytokine secretion which is the major function of these cells. As CD56 NK cells are highly enriched in tissues and in tumors, our observations point to a possible effect of local AhR ligands in the regulation of the function of CD56 tissue-resident or intratumoral NK cells.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.