This paper presents a novel process comprising solar upgrading of hydrocarbons by steam reforming in solar specific receiver-reactors and utilizing the upgraded, hydrogen-rich fuel in high efficiency conversion systems, such as gas turbines or fuel cells. In comparison to conventionally heated processes about 30% of fuel can be saved with respect to the same specific output. Such processes can be used in small scale as a stand-alone system for off-grid markets as well as in large scale to be operated in connection with conventional combined-cycle plants. The complete reforming process will be demonstrated in the SOLASYS project, supported by the European Commission in the JOULE/THERMIE framework. The project has been started in June 1998. The SOLASYS plant is designed for 300 kWel output, it consists of the solar field, the solar reformer and a gas turbine, adjusted to operate with the reformed gas. The SOLASYS plant will be operated at the experimental solar test facility of the Weizmann Institute of Science in Israel. Start-up of the pilot plant is scheduled in April 2001. The midterm goal is to replace fossil fuels by renewable or non-conventional feedstock in order to increase the share of renewable energy and to establish processes with only minor or no CO2 emission. Examples might be upgrading of bio-gas from municipal solid waste as well as upgrading of weak gas resources.
Adapting a gas turbine to high-temperature solar receivers and solar tower technology constitutes real progress towards commercial solar power utilization with high efficiency combined cycle power system. Solar gas turbine systems can also be adapted to hybrid solar/fossil fuel operation, thanks to its high efficiency conversion, relatively small solar field, and quick response to load fluctuations, low CO2 emissions, easy start, and more effective equipment utilization. ORMAT initiated adaptation and modification of gas turbines for solar energy applications in the early 1990s in cooperation with the Weizmann Institute of Science and later with the Boeing Corporation, with the support of the United States Israel Science and Technology Foundation (USISTF). Ultimately, the concept reached its successful realization (2001–2004) in the solar tower Plataforma Solar de Almeria (Spain) which has three solar receivers and a receiving system designed and supplied by the German Aerospace Center DLR.
This paper presents a novel process comprising solar upgrading of hydrocarbons by steam reforming in solar specific receiver reactors and utilizing the upgraded, hydrogen-rich fuel, in high efficiency conversion systems, such as gas turbines or fuel cells. In comparison to conventionally heated processes, about 30 % of fuel can be saved with respect to the same specific output. Such processes can be used in small scale as a stand-alone system for off-grid markets, as well as in large scale to be operated in connection with conventional combined-cycle plants. The solar reforming process has an intrinsic potential for solar/fossil hybrid operation, as well as a capability of solar energy storage to increase the capacity factor. The complete reforming process will be demonstrated in the SOLASYS project, supported by the European Commission in the JOULE/THERMIE framework. The project has been started in June 1998. The SOLASYS plant is designed for 300 kWel output, it consists of the solar field, the solar reformer and a gas turbine, modified to enable operation both on fossil fuel as well as on the product gas from the solar reformer. The SOLASYS plant will be operated at the experimental solar test facility of the Weizmann Institute of Science, Israel. Start-up of the pilot plant is scheduled for the end of the year 2000. The midterm goal is to replace fossil fuel feedstock by renewable or non conventional feedstocks in order to increase the share of renewable energy and to establish processes with only minor or no CO2 emissions. Examples are given for solar upgrading of bio-gas from municipal solid waste as well as for upgrading of weak gas resources. With some feedstock pretreatment (removal of sulfur components, adjustment of composition) the product gases after solar reforming can be used for further processing to methanol or other chemical compounds.
Solar energy can be utilized to drive chemical processes to produce syngas, a hydrogen rich fuel that can be used for power generation. ORMAT took part in the Solasys project in which syngas was produced by a reforming process driven by solar energy. The solar energy was concentrated in a volumetric receiver. ORMAT presented two modes of operation for introducing syngas to a gas turbine. One mode of “syngas only” and the second for utilization of mixtures of LPG and syngas. Modification of a gas turbine to be fueled only with syngas, incorporated modifications in the combustion chamber, fuel system and control system. The gas turbine which operated on mixtures of LPG and syngas was not modified but an external fuel mixing system was added ahead of its gas line. It operated smoothly with the mixed fuel, with minimum drop in performance up to about 40% syngas in the mixture, contributing approximately 20% of solar energy to the electric power production with up to 80% syngas mass fraction in the fuel.
The growing share of global energy consumption by cities (currently over 65%) raises the requirements for a systematic holistic approach for designing urban energy infrastructure in order to ensure its sustainability. A literature review of state-of-the-art modeling of urban energy infrastructure design emphasized the incomprehensive sustainability of the performed evaluations, as they accounted for several aspects of sustainability but missed others. Omitting important aspects can have significant implications which can put the sustainability of the energy infrastructure at risk. In this study, we attempted to develop a comprehensive model for designing sustainable energy infrastructure for urban districts, which accounts for the four aspects of sustainability: social, technical, environmental, and economic. The model is based on a four-step methodology: district characterization, a technological survey for distributed generation and energy storage, selecting suitable technologies according to social and technical criteria, and simulations of different energy infrastructure configurations to find the most suitable configurations basing on economic and environmental criteria. The research includes a case study in which the model was implemented for the Technion campus in Haifa. The developed model proved to be a comprehensive, efficient, and versatile tool for designing urban energy infrastructure.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.