In order to investigate the possible involvement of endoplasmic reticulum (ER) stress in the developmental origins of hepatic steatosis associated with undernourishment in utero, we herein employed a fetal undernourishment mouse model by maternal caloric restriction in three cohorts; cohort 1) assessment of hepatic steatosis and the ER stress response at 9 weeks of age (wks) before a high fat diet (HFD), cohort 2) assessment of hepatic steatosis and the ER stress response on a HFD at 17 wks, cohort 3) assessment of hepatic steatosis and the ER stress response at 22 wks on a HFD after the alleviation of ER stress with a chemical chaperone, tauroursodeoxycholic acid (TUDCA), from 17 wks to 22 wks. Undernourishment in utero significantly deteriorated hepatic steatosis and led to the significant integration of the ER stress response on a HFD at 17 wks. The alleviation of ER stress by the TUDCA treatment significantly improved the parameters of hepatic steatosis in pups with undernourishment in utero, but not in those with normal nourishment in utero at 22 wks. These results suggest the pivotal involvement of the integration of ER stress in the developmental origins of hepatic steatosis in association with undernourishment in utero.
Nonalcoholic fatty liver disease (NAFLD) is a hepatic manifestation of metabolic syndrome. The prevalence of NAFLD in Japan has nearly doubled in the last 10-15 years. Increasing evidence supports undernourishment in utero being causatively connected with the risk of NAFLD in later life. Low body mass index (BMI) has been common among Japanese women of childbearing age for several decades due to their strong desire to be thin. It is plausible that insufficient maternal energy intake by pregnant Japanese women may underlie the rapid increase in the prevalence of NAFLD in Japan. In order to clarify the mechanisms by which undernourishment in utero primes adult hepatic steatosis, we developed a mouse model of fetal undernourishment with a hepatic fat deposit-prone phenotype on an obesogenic high fat diet in later life. We found that endoplasmic reticulum (ER) stress response parameters were activated concomitantly with the deterioration of hepatic steatosis and also that the alleviation of ER stress with the chemical chaperone, tauroursodeoxycholic acid (TUDCA), significantly improved hepatic steatosis. Therefore, undernourishment in utero may program the future integration of ER stress in the liver on an obesogenic diet in later life and also induce the deterioration of hepatic steatosis. These results also provide an insight into interventions for the potential high-risk population of NAFLD, such as those born small or exposed to maternal undernourishment during the fetal period, with the alleviation of ER stress by dietary supplements and/or specific food including chaperones.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.