Herbs have been integral to both traditional and non-traditional forms of medicine dating back at least 5000 years. The enduring popularity of herbal medicines may be explained by the perception that herbs cause minimal unwanted side effects. More recently, scientists increasingly rely on modern scientific methods and evidence-based medicine to prove efficacy of herbal medicines and focus on better understanding of mechanisms of their action. However, information concerning quantitative human health benefits of herbal medicines is still rare or dispersed, limiting their proper valuation. Preparations from traditional medicinal plants are often used for wound healing purposes covering a broad area of different skin-related diseases. Herbal medicines in wound management involve disinfection, debridement, and provision of a suitable environment for aiding the natural course of healing. Here we report on 22 plants used as wound healing agents in traditional medicine around the world. The aim of this review is therefore to review herbal medicines, which pose great potential for effective treatment of minor wounds.
The life expectancy in the Western world is increasing for a long time, which is the courtesy of a higher life standard, a more thorough hygiene, and, of course, the progress of modern medicine. Nevertheless, one of the illnesses that still proves to be a great challenge regardless of the recent advancements in medicine is cancer. Skin cancer is, according to the World Health Organization, the most common malignancy for the white population. The beginning of the paper offers a brief overview of the latest available information concerning epidemiology, aetiology, diagnostics, and treatment options for skin cancer, whereas the rest of the article deals with modern approaches to skin cancer treatment, highlighting recent development of nanotechnology based treatment approaches. Among these, we focus especially on the newest nanotechnological approaches combined with chemotherapy, a field which specialises in target specificity, drug release control, and real time monitoring with the goal being to diminish unwanted side effects and their severity, achieving a cheaper treatment and a generally more efficient chemotherapy. The field of nanotechnology is a rapidly developing one, judging by already approved clinical studies or by new theranostic agents that combine both the therapeutic and diagnostic modalities.
Three-dimensional scaffolds (3D) with controlled shape, dual porosity and long-term mechanical and dimensional stability in biofluids are of interest as biotemplates in tissue engineering. Herein, self-standing and lightweight cellulose-based biogenic scaffolds with a spatially structured morphology, macropores and interconnected micropores were fabricated using a combination of direct ink writing 3D printing and freeze-drying techniques. This was achieved by developing a water-based and low-cost bicomponent ink based on commercially available nanofibrillated cellulose (NFC) and carboxymethyl cellulose (CMC). Physical cross-linking through dehydrothermal treatment significantly increased the surface hardness, indentation modulus, compression strength, as well as the dimensional stability of the scaffolds in biofluids, in comparison to untreated materials. However, no differences in the spectra of solid state nuclear magnetic resonance or infrared were observed for dehydrothermal treated samples, suggesting that the increase of mechanical properties and dimensional stability is based on the physical cross-linking of functional groups both at the interface between NFC and CMC. The supramolecular structure of the polymers was well-preserved as disclosed by X-ray diffraction measurements. The cross-linked scaffolds showed high proliferation, viability, and attachment of human bone tissue derived osteoblast cells (hFOB). The simple and straightforward avenue proposed here for the design of cellulose-based fibrous inks and dual porous scaffolds from the commercially available materials and without the need of any additional cross-linkers should pave the way for the development of implantable, degradable scaffolds and cell-laden biomaterials for bone tissue regeneration and 3D bioprinting applications.
Diaper dermatitis is the most common inflammatory skin eruption within the diaper area in infants and toddlers. Although it rarely causes problems for prolonged periods of time, it causes considerable distress for both infants and parents. Diapered skin is exposed to friction, excessive hydration, varying pH, and is in constant contact with urine and feces, both of which are highly irritant to the skin. The three most common types of diaper dermatitis include chaffing dermatitis, irritant contact dermatitis, and diaper candidiasis. However, a variety of other skin conditions may manifest in the diaper area. Candida albicans and Staphylococcus aureus are most frequently isolated from the affected area and are thought to have a predominant role in diaper dermatitis. The review includes an overview of the epidemiology, etiology, and common skin microbiota in the diaper area. State-of-the-art strategies for diagnosis, management, and prevention of diaper dermatitis are also included. Appropriate skin care can help in the prevention of diaper dermatitis and can aid the reparation of the skin. This review discusses common causes, skin microbiota within the diapered area, differential diagnosis, and finally possible prevention and treatment recommendations. Recent findings have proven that the key to efficient eradication of irritant diaper dermatitis lies in its prevention.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.