Dandanes se pojavlja vse več učnih sistemov, ki podpirajo aktivno učenje in upoštevajo učenčeve učne lastnosti, značilnosti in aktivnosti. V prispevku predstavljamo zasnovo učnega priporočilnega sistema, ki združuje znanja pedagogike in računalniških priporočilnih algoritmov. Proučujemo, kako združevanje modelov učnih stilov vpliva na izbiro različnih tipov večpredstavnih učnih gradiv. Rezultati kažejo, da študentje za učenje najpogosteje uporabljajo dobro strukturirana učna gradiva, ki vsebujejo barvno diskriminacijo, in da je hemisferični model učnih stilov najpomembnejši odločitveni kriterij. V nadaljevanju opisujemo postopek za reševanje t. i. problema hladnega zagona, s katerim je mogoče izboljšati točnost sistema za priporočanje učnih gradiv v okoljih, kjer o učencih nimamo predhodnih podatkov. Namen prispevka je predstaviti idejno zasnovo prilagodljivega učnega sistema z analizo njegovih predvidenih učinkov na učno prakso.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.