Biochips, or digital labs-on-chip, are developed with the purpose of being used by laboratory technicians or biologists in laboratories or clinics. In this article, we expand this vision with the goal of enabling everyone, regardless of their expertise, to use biochips for their own personal purposes. We developed OpenDrop, an integrated electromicrofluidic platform that allows users to develop and program their own bio-applications. We address the main challenges that users may encounter: accessibility, bio-protocol design and interaction with microfluidics. OpenDrop consists of a do-it-yourself biochip, an automated software tool with visual interface and a detailed technique for at-home operations of microfluidics. We report on two years of use of OpenDrop, released as an open-source platform. Our platform attracted a highly diverse user base with participants originating from maker communities, academia and industry. Our findings show that 47% of attempts to replicate OpenDrop were successful, the main challenge remaining the assembly of the device. In terms of usability, the users managed to operate their platforms at home and are working on designing their own bio-applications. Our work provides a step towards a future in which everyone will be able to create microfluidic devices for their personal applications, thereby democratizing parts of health care.
Although niche grassroots initiatives can push bottom‐up sustainability transitions, they can face problems in forming a more global niche and in scaling their innovative solutions to a regime level. A thorough literature review shows scholarly agreement on the assumption that universities and non‐governmental organisations (NGOs) can support sustainability transition in the acceleration phase by intermediating within niches and between niches and regimes. As in‐depth research and a reality check on successful intermediary strategies in this context are still lacking, this paper aims to contribute to a conceptual framework that integrates the NGOs and universities expected activities in existing literature and relates them to one another. We develop such a framework and test it in three case studies from the plastic revaluation field, comparing and drawing on the perspectives of niche, intermediary and regime actors. Findings confirm the conceptual framework and suggest changes and extensions. We enhance existing knowledge by providing detailed insights into successful intermediary activities in these innovation systems and draw conclusions for policymakers.
Global attempts to renew scientific education aim to stop the decline of young people's interest in science and technology, and to promote the development of citizens' scientific literacy for sustainable development. Among other changes, these aims require the adaptation of K12 Biological Science Teacher’s training to meet the new objectives.Scientific literacy involves knowing science and how knowledge is developed and validated, recognizing the interactions between science, technology and society, that is, the nature of science (NoS; a set of meta-scientific contents that encompass historical, epistemological and sociological aspects of science with great value for scientific education). It also involves grasping of cognitive skills underlying critical thinking (CT; a set of cognitive abilities, including self-regulation and metacognitive processes) and creative problem solving. Therefore, scientific literacy contributes to making informed decisions, facilitating the participation of citizens in situations and dilemmas of scientific tenor.In addition, CT is closely related to the performance of educators in their professional work. Particularly, in the teaching of science, CT skills favour and enhance the learning of concepts and theories linked not only to science but also to the NoS.Considering the current conditions of middle-higher K12 Biological Science Teachers’ formation and classrooms´ limitations in our country and the region, we propose a pilot project aiming to promote the transformation of initial teachers´ training, seeking to improve the development of CT skills and to deepen NoS comprehension. It will involve the immersion of K12 Biological Science Teacher students in Biological Science Living Physical and "mirror" Virtual Reality Laboratories. These laboratories will be equipped with "do it yourself" (DIY), "do it with others" (DIWO) and "bring your own device" (BYOD) technologies for the implementation of research-type activities framed in the philosophy of the "fabrication laboratories". The virtual platform will also comprise a library with didactic resources under permissive licenses to ensure a broader impact.Within these environments, K12 Biological Science Teacher students will engage in the creation of didactic units involving problem solving and knowledge building in parallel to deeper understanding of scientific processes. We also hope to promote the creativity and innovation of the participants, and the appropriation of DIY/DIWO/BYOD and virtual reality technologies as educational resources in the classroom and everyday life.Thanks to the virtual environment, this approach would also allow to reach both National and International K12 Biological Science Teacher students and graduate Biological Science Teachers. Considering the universal access to the Internet and free access to educational platforms in several countries, we also hope to impact on the non-formal and informal Biological Science education and contribute to achieving quality education for all (Objective # 4 of the Agenda for Sustainable Development 2030, UNESCO) beyond geographical and cultural barriers.This pilot project will be implemented by an interinstitutional, multidisciplinary and international team. It will capitalize on confluent groups´ previous experience and complementary strengths in Science didactics (particularly biology), engineering, arts, virtual reality, fabrication, as well as open hardware and open software culture.The experimental approach corresponds to a quasi-experimental pre-test/post-test design with control groups, and formative and summative evaluation.As a result of the implementation of this educational innovation we expect to contribute to the improvement of Biological Science Teachers students´ CT skills and promote their active involvement in practical activities that should enhance their professional activity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.