Flow of non-Newtonian fluids through topologically complex structures is ubiquitous in most biological, industrial and environmental settings. The interplay between local hydrodynamics and the fluid's constitutive law determines the distribution of flow paths. Consequently the spatial heterogeneity of the viscous resistance controls mass and solute transport from the micron to the meter scale. Examples range from oil recovery and groundwater engineering to drug delivery, filters and catalysts. Here we present a new methodology to map the spatial variation of the local viscosity of a non-Newtonian fluid flowing through a complex pore geometry. We use high resolution image velocimetry to determine local shear rates. Knowing the local shear rate in combination with a separate measurement of the fluid's constitutive law allows to quantitatively map the local viscosity at the pore scale. Our experimental results-which closely match with three-dimensional numerical simulations-demonstrate that the exponential decay of the longitudinal velocity distributions, previously observed for Newtonian fluids, is a function of the spatial heterogeneity of the local viscosity. This work sheds light on the relationship between hydraulic properties and the viscosity at the pore scale, which is of fundamental importance for predicting transport properties, mixing, and chemical reactions in many porous systems.
We combine results of high-resolution microfluidic experiments with extensive numerical simulations to show how the flow patterns inside a “swiss-cheese” type of pore geometry can be systematically controlled through the intrinsic rheological properties of the fluid. Precisely, our analysis reveals that the velocity field in the interstitial pore space tends to display enhanced channeling under certain flow conditions. This observed flow “localization”, quantified by the spatial distribution of kinetic energy, can then be explained in terms of the strong interplay between the disordered geometry of the pore space and the nonlinear rheology of the fluid. Our results disclose the possibility that the constitutive properties of the fluid can enhance the performance of chemical reactors and chromatographic devices through control of the channeling patterns inside disordered porous media.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.