Nano-dimensional materials have become a focus of multiple clinical applications due to their unique physicochemical properties. Magnetic nanoparticles represent an important class of nanomaterials that are widely studied for use as magnetic resonance (MR) contrast and drug delivery agents, especially as they can be detected and manipulated remotely. Using magnetic cobalt ferrite spinel (MCFS) nanoparticles, this study was aimed at developing a multifunctional drug delivery platform with MRI capability for use in cancer treatment. We found that MCFS nanoparticles demonstrated outstanding properties for contrast MRI (r1 = 22.1 s–1mM–1 and r2 = 499 s–1mM–1) that enabled high-resolution T1- and T2-weighted MRI-based signal detection. Furthermore, MCFS nanoparticles were used for the development of a multifunctional targeted drug delivery platform for cancer treatment that is concurrently empowered with the MR contrast properties. Their therapeutic effect in systemic chemotherapy and unique MRI double-contrast properties were confirmed in vivo using a breast cancer mouse tumor model. Our study thus provides an empirical basis for the development of a novel multimodal composite drug delivery system for anticancer therapy combined with noninvasive MRI capability.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.