In order to effectively provide ultra reliable low latency communications and pervasive connectivity for Internet of Things (IoT) devices, next-generation wireless networks can leverage intelligent, data-driven functions enabled by the integration of machine learning notions across the wireless core and edge infrastructure. In this context, this paper provides a comprehensive tutorial that overviews how artificial neural networks (ANNs)-based machine learning algorithms can be employed for solving various wireless networking problems. For this purpose, we first present a detailed overview of a number of key types of ANNs that include recurrent, spiking, and deep neural networks, that are pertinent to wireless networking applications. For each type of ANN, we present the basic architecture as well as specific examples that are particularly important for wireless network design. Such examples include echo state networks, liquid state machine, and long short term memory. And then, we provide an in-depth overview on the variety of wireless communication problems that can be addressed using ANNs, ranging from communication using unmanned aerial vehicles to virtual reality applications over wireless networks and edge computing and caching. For each individual application, we present the main motivation for using ANNs along with the associated challenges while we also provide a detailed example for a use case scenario and outline future works that can be addressed using ANNs. In a nutshell, this article constitutes the first holistic tutorial on the development of ANN-based machine learning techniques tailored to the needs of future wireless networks. arXiv:1710.02913v2 [cs.IT] 30 Jun 2019• Input gate (i t ): controls whether the input is passed on to the memory cell or ignored. • Output gate (o t ): controls whether the current activation
LTE in unlicensed spectrum using licensed assisted access LTE (LTE-LAA) is a promising approach to overcome the wireless spectrum scarcity. However, to reap the benefits of LTE-LAA, a fair coexistence mechanism with other incumbent WiFi deployments is required. In this paper, a novel deep learning approach is proposed for modeling the resource allocation problem of LTE-LAA small base stations (SBSs). The proposed approach enables multiple SBSs to proactively perform dynamic channel selection, carrier aggregation, and fractional spectrum access while guaranteeing fairness with existing WiFi networks and other LTE-LAA operators. Adopting a proactive coexistence mechanism enables future delay-tolerant LTE-LAA data demands to be served within a given prediction window ahead of their actual arrival time thus avoiding the underutilization of the unlicensed spectrum during off-peak hours while maximizing the total served LTE-LAA traffic load. To this end, a noncooperative game model is formulated in which SBSs are modeled as Homo Egualis agents that aim at predicting a sequence of future actions and thus achieving long-term equal weighted fairness with WLAN and other LTE-LAA operators over a given time horizon. The proposed deep learning algorithm is then shown to reach a mixed-strategy Nash equilibrium (NE), when it converges. Simulation results using real data traces show that the proposed scheme can yield up to 28% and 11% gains over a conventional reactive approach and a proportional fair coexistence mechanism, respectively. The results also show that the proposed framework prevents WiFi performance degradation for a densely deployed LTE-LAA network. Index TermsLicensed assisted access LTE (LTE-LAA); LTE-U; small cell; unlicensed band; long short term memory (LSTM); deep reinforcement learning; game theory; proactive resource allocation A preliminary version of this work was published at European Wireless 2017 [1].
Cellular-connected unmanned aerial vehicles (UAVs) will inevitably be integrated into future cellular networks as new aerial mobile users. Providing cellular connectivity to UAVs will enable a myriad of applications ranging from online video streaming to medical delivery. However, to enable a reliable wireless connectivity for the UAVs as well as a secure operation, various challenges need to be addressed such as interference management, mobility management and handover, cyber-physical attacks, and authentication. In this paper, the goal is to expose the wireless and security challenges that arise in the context of UAV-based delivery systems, UAV-based real-time multimedia streaming, and UAV-enabled intelligent transportation systems. To address such challenges, artificial neural network (ANN) based solution schemes are introduced. The introduced approaches enable the UAVs to adaptively exploit the wireless system resources while guaranteeing a secure operation, in real-time. Preliminary simulation results show the benefits of the introduced solutions for each of the aforementioned cellular-connected UAV application use case.
Intelligent transportation systems (ITSs) will be a major component of tomorrow's smart cities. However, realizing the true potential of ITSs requires ultra-low latency and reliable data analytics solutions that can combine, in realtime, a heterogeneous mix of data stemming from the ITS network and its environment. Such data analytics capabilities cannot be provided by conventional cloud-centric data processing techniques whose communication and computing latency can be high. Instead, edge-centric solutions that are tailored to the unique ITS environment must be developed. In this paper, an edge analytics architecture for ITSs is introduced in which data is processed at the vehicle or roadside smart sensor level in order to overcome the ITS latency and reliability challenges. With a higher capability of passengers' mobile devices and intra-vehicle processors, such a distributed edge computing architecture can leverage deep learning techniques for reliable mobile sensing in ITSs. In this context, the ITS mobile edge analytics challenges pertaining to heterogeneous data, autonomous control, vehicular platoon control, and cyber-physical security are investigated. Then, different deep learning solutions for such challenges are proposed. The proposed deep learning solutions will enable ITS edge analytics by endowing the ITS devices with powerful computer vision and signal processing functions. Preliminary results show that the proposed edge analytics architecture, coupled with the power of deep learning algorithms, can provide a reliable, secure, and truly smart transportation environment.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.