Here, we characterize a plastidial thioredoxin (TRX) isoform from Arabidopsis thaliana that defines a previously unknown branch of plastidial TRXs lying between x-and y-type TRXs and thus was named TRX z. An Arabidopsis knockout mutant of TRX z had a severe albino phenotype and was inhibited in chloroplast development. Quantitative real-time RT-PCR analysis of the mutant suggested that the expressions of genes that depend on a plastid-encoded RNA polymerase (PEP) were specifically decreased. Similar results were obtained upon virus-induced gene silencing (VIGS) of the TRX z ortholog in Nicotiana benthamiana. We found that two fructokinase-like proteins (FLN1 and FLN2), members of the pfkB-carbohydrate kinase family, were potential TRX z target proteins and identified conserved Cys residues mediating the FLN-TRX z interaction. VIGS in N. benthamiana and inducible RNA interference in Arabidopsis of FLNs also led to a repression of PEPdependent gene transcription. Remarkably, recombinant FLNs displayed no detectable sugar-phosphorylating activity, and amino acid substitutions within the predicted active site imply that the FLNs have acquired a new function, which might be regulatory rather than metabolic. We were able to show that the FLN2 redox state changes in vivo during light/dark transitions and that this change is mediated by TRX z. Taken together, our data strongly suggest an important role for TRX z and both FLNs in the regulation of PEP-dependent transcription in chloroplasts.
The yeast gene, ACPI, encoding the mitochondrial acyl carrier protein, was deleted by gene replacement. The resulting acpl-deficient mutants had only 5-10% of the wild-type lipoic acid content remaining, and exhibited a respiratorydeficient phenotype. Upon meiosis, the lipoate deficiency cosegregated with the acpl deletion. The role of ACPI in longchain fatty acid synthesis was studied in fasl and fas2 null mutants completely lacking cytoplasmic fatty acid synthase. When grown on odd-chain (13:0 and 15:0) fatty acids, these cells showed less than 1% of C-16 and C-18 acids in their total lipids. Mitochondrial ACP is therefore suggested to be involved with the biosynthesis of octanoate, a precurser to lipoic acid.
Exfoliation syndrome (XFS) is the commonest known risk factor for secondary glaucoma and a significant cause of blindness worldwide. Variants in two genes, LOXL1 and CACNA1A have been previously associated with XFS. To further elucidate the genetic basis of XFS, we collected a global sample of XFS cases to refine the association at LOXL1, which previously showed inconsistent results between populations, and to identify new variants associated with XFS. We identified a rare, protective allele at LOXL1 (p.407Phe, OR = 25, P =2.9 × 10−14) through deep resequencing of XFS cases and controls from 9 countries. This variant results in increased cellular adhesion strength compared to the wild-type (p.407Tyr) allele. A genome-wide association study (GWAS) of XFS cases and controls from 24 countries followed by replication in 18 countries identified seven genome-wide significant loci (P < 5 × 10−8). Index variants at the new loci map to chromosomes 13q12 (POMP), 11q23.3 (TMEM136), 6p21 (AGPAT1), 3p24 (RBMS3) and 5q23 (near SEMA6A). These findings provide biological insights into the pathology of XFS, and highlight a potential role for naturally occurring rare LOXL1 variants in disease biology.
Bakers' yeast is auxotrophic for biotin (vitamin H) and depends on the efficient uptake of this compound from the environment. A mutant strain with strongly reduced biotin uptake and with reduced levels of protein biotinylation was identified. The strain was auxotrophic for long-chain fatty acids, and this auxotrophy could be suppressed with high levels of biotin in the medium. After transformation of this mutant with a yeast genomic library, the unassigned open reading frame YGR065C was identified to complement this mutation. This gene codes for a protein with 593 amino acids and 12 putative transmembrane helices. Northern blot analysis revealed that, in wild-type cells, the corresponding mRNA levels were increased at low biotin concentrations. Likewise, cellular biotin uptake was increased with decreasing biotin availability. Expression of YGR065C under the control of the constitutive ADH1 promoter resulted in very high biotin transport rates across the plasma membrane that were no longer regulated by the biotin concentration in the growth medium. We conclude that YGR065C encodes the first biotin transporter identified for a non-mammalian organism and designate this gene VHT1 for vitamin H transporter 1.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.