Monolithic adsorbers with anion exchange (AEX) properties have been 3D printed in an easy one-step process, i.e. not requiring post-functionalization to introduce the AEX ligands. The adsorber, 3D printed using a commercial digital light processing (DLP) printer, was obtained by copolymerisation of a bifunctional monomer bearing a positively charged quaternary amine as well as an acrylate group, with the biocompatible crosslinker polyethylene glycol diacrylate (PEGDA). To increase the surface area, polyethylene glycol was introduced into the material formulation as pore forming agent. The influence of photoinitiator (Omnirad 819) and photoabsorber (Reactive Orange 16, RO16) concentration was investigated in order to optimize printing resolution, allowing to reliably 3D print features as small as 200 µm and of highly complex Schoen gyroids. Protein binding was measured on AEX adsorbers with a range of ligand densities (0.00, 2.03, 2.60 and 3.18 mmol/mL) using bovine serum albumin (BSA) and c-phycocyanin (CPC) as model proteins. The highest equilibrium binding capacity was found for the material presenting the lowest ligand density analysed (2.03 mmol/mL), adsorbing 73.7 ± 5.9 mg/mL and 38.0 ± 2.2 mg/mL of BSA and CPC, respectively. This novel 3D printed material displayed binding capacities in par or even higher than commercially available chromatographic resins. We expect that the herein presented approach of using bifunctional monomers, bearing commonly used chromatography ligands, will help overcome the material limitations currently refraining 3D printing applications in separation sciences.
Three-dimensional printing applications in separation science are currently limited by the lack of materials compatible with chromatographic operations and three-dimensional printing technologies. In this work, we propose a new material for Digital Light Processing printing to fabricate functional ion exchange monoliths in a single step. Through copolymerization of the bifunctional monomer [2-(acryloyloxy)ethyl] trimethylammonium chloride, monolithic structures with quaternary amine ligands were fabricated. The novel formulation was optimized in terms of protein binding and recovery, microporous structure, and its swelling susceptibility by increasing its cross-link density and employing cyclohexanol and dodecanol as pore forming agents. In static conditions, the material demonstrated a maximum binding capacity of 104.2 ± 10.6 mg/mL for bovine serum albumin, in line with commercially available materials. Its anion exchange behavior was validated by separating bovine serum albumin and myoglobin on a monolithic bed with Schoen gyroid morphology. The same column geometry was tested for the purification of C-phycocyanin from clarified as well as cell-laden Arthrospira platensis feedstocks. This represents the first demonstration of one-step printed stationary phases to capture proteins directly from solid-laden feedstocks. We believe that the material presented here represents a significant improvement towards implementation of three-dimensional printed chromatography media in the field of separation science.
Background
3D printing is revolutioning many industrial sectors and has the potential to enhance also the biotechnology and bioprocessing fields. Here, we propose a new flexible material formulation to 3D print support matrices with complex, perfectly ordered morphology and with tuneable properties to suit a range of applications in bioprocess engineering.
Findings
Supports were fabricated using functional monomers as the key ingredients, enabling matrices with bespoke chemistry, such as charged groups, chemical moieties for further functionalization, and hydrophobic/hydrophilic groups. Other ingredients, e.g. crosslinkers and porogens, can be employed to fabricate supports with diverse characteristics of their porous network, providing an opportunity to further regulate the mechanical and mass transfer properties of the supports. Through this approach, we fabricated and demonstrated the operation of Schoen gyroid columns with (I) positive and negative charges for ion exchange chromatography, (II) enzyme bioreactors with immobilized trypsin to catalyse hydrolysis, and (III) bacterial biofilm bioreactors for fuel desulphurization.
Conclusions
This study demonstrates a simple, cost-effective, and flexible fabrication of customized 3D printed supports for different biotechnology and bioengineering applications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.