It has been proposed that infections with helminths can protect from the development of allergic diseases. However, epidemiological and experimental studies have yielded conflicting results. Therefore we investigated if an infection with Nippostrongylus brasiliensis influenced the development of allergen-induced Th2 cell responses in mice. We found a decrease in allergen-induced airway eosinophilia and Eotaxin levels in the airways when mice were infected with the helminths 8 weeks, and especially 4 weeks, but not 1 or 2 weeks before ovalbumin (OVA)-airway challenge. While OVA-specific IgG1 and IgE serum levels and cutaneous hypersensitivity reactions were not reduced by the helminth infection, there was a reduction in OVA-specific IgG1 and IgE levels in bronchoalveolar lavage fluid of mice. Suppression of allergen-induced airway eosinophilia and reduction of Eotaxin production was not observed in IL-10 deficient mice. In addition, we found that helminth-induced airway eosinophilia and Eotaxin production was strongly increased in IL-10 deficient mice infected with the helminths in comparison to control mice. Taken together, these results show that infection with N. brasiliensis suppresses the development of allergen-induced airway eosinophilia and that this effect may be mediated by IL-10. Our results support the view that helminth infections can contribute to the suppression of allergies in humans.
Most infections with respiratory viruses induce Th1 responses characterized by the generation of Th1 and CD8+ T cells secreting IFN-γ, which in turn have been shown to inhibit the development of Th2 cells. Therefore, it could be expected that respiratory viral infections mediate protection against asthma. However, the opposite seems to be true, because viral infections are often associated with the exacerbation of asthma. For this reason, we investigated what effect an influenza A (flu) virus infection has on the development of asthma. We found that flu infection 1, 3, 6, or 9 wk before allergen airway challenge resulted in a strong suppression of allergen-induced airway eosinophilia. This effect was associated with strongly reduced numbers of Th2 cells in the airways and was not observed in IFN-γ- or IL-12 p35-deficient mice. Mice infected with flu virus and immunized with OVA showed decreased IL-5 and increased IFN-γ, eotaxin/CC chemokine ligand (CCL)11, RANTES/CCL5, and monocyte chemoattractant protein-1/CCL2 levels in the bronchoalveolar lavage fluid, and increased airway hyperreactivity compared with OVA-immunized mice. These results suggest that the flu virus infection reduced airway eosinophilia by inducing Th1 responses, which lead to the inefficient recruitment of Th2 cells into the airways. However, OVA-specific IgE and IgG1 serum levels, blood eosinophilia, and goblet cell metaplasia in the lung were not reduced by the flu infection. Flu virus infection also directly induced AHR and goblet cell metaplasia. Taken together, our results show that flu virus infections can induce, exacerbate, and suppress features of asthmatic disease in mice.
Infection of nuclear factor of activated T-cell transcription factor c2 (NFATc2)-deficient mice with the helminth Nippostrongylus brasiliensis led to a distinct increase in interleukin-4 (IL-4) and IL-5 protein synthesis by lymph node and spleen cells and to elevated serum immunoglobulin E (IgE) levels in comparison to those seen with infected control mice. While IL-4, IL-5, and IL-13 mRNA expression was also enhanced in lymph node cells from the lungs of infected NFATc2 ؊/؊ mice, the number of T cells secreting Th2-type lymphokines remained the same in mice infected with N. brasiliensis. In contrast, lymphocytes from NFATc2-deficient mice infected with Mycobacterium bovis BCG secreted less gamma interferon than lymphocytes from infected control mice. These findings indicate that NFATc2 is an activator of Th1 responses and a suppressor of Th2 responses in vivo.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.