Relief from suffering is the guiding principle of medical and veterinary ethics. Medical care for animals should be carried out to meet all welfare conditions. The need for pain management is demonstrated by recent monographs devoting attention to this urgent ethical need. Little data, however, are available on the prevention and attenuation of pain in sheep. After administration of narcotic analgesics used for severe visceral pain, sheep react with a state of excitement. Therefore, it was decided to experimentally investigate the usefulness of potential non-narcotic drugs to relieve pain in sheep with intestinal colic caused by 10 min of mechanical distension of their duodenal and/or descending colonic wall. The results indicate the potential usefulness of VGCCIs (diltiazem, nifedipine, verapamil), cholecystokinin receptor antagonists (PD, proglumide), and metabotropic glutaminergic receptor antagonists (mGluRAs), such as L-AP3, DL-AP3. As a premedication, these substances prevented the occurrence of symptoms of acute intestinal pain including atony of reticulo-rumen, tachycardia, hyperventilation, moaning, gnashing of teeth, hypercortisolemia, and catecholaminemia; hence, these substances are considered potential agents in the treatment of sheep visceral pain.
Neuropathic pain is a serious therapeutic problem. Current therapy is often ineffective, and the available drugs have serious side effects. For these reasons, the search for alternative therapeutic solutions is underway. Recent research on metabotropic receptors for glutamic acid (mGluR) gives great hope for the development of a new type of drug in the treatment of neuropathic pain. Particularly promising are antagonists of mGluR group I receptors. There are many studies demonstrating the efficacy of non-competitive mGlu1 and mGlu5 receptor antagonists in animal models of neuropathic pain. The purpose of this study was to gather information obtained from research on the role of mGluR antagonists in neuropathic pain. The blockade of intracellular glutamatergic receptor could represent a new strategy for the development of effective therapies for neuropathic pain.
One of the major roles of glutamic acid (Glu) is to serve as an excitatory neurotransmitter within the central nervous system (CNS). This amino acid influences the activity of several brain areas, including the thalamus, brainstem, spinal cord, basal ganglia, and pons. Catecholamines (CAs) are synthesized in the brain and adrenal medulla and by some sympathetic nerve fibers. CAs, including dopamine (DA), norepinephrine (NE), and epinephrine (E), are the principal neurotransmitters that mediate a variety of CNS functions, such as motor control, cognition, emotion, memory processing, pain, stress, and endocrine modulation. This study aims to investigate the effects of the application of various Glu concentrates (5, 50, and 200 µM) on CAs release from rabbit medial prefrontal cortex (mPFC) slices and compare any resulting correlations with CAs released from the hypothalamus during 90 min of incubation. Medial prefrontal cortex samples were dissected from decapitated, twelve-week-old female rabbits. The results demonstrated that Glu differentially influences the direct release of CAs from the mPFC and the indirect release of CAs from the hypothalamus. When under stress, the hypothalamus, a central brain structure of the HPA axis, induces and adapts such processes. Generally, there was an inhibitory effect of Glu on CAs release from mPFC slices. Our findings show that the effect arises from Glu’s action on higher-order motivational structures, which may indicate its contribution to the stress response by modulating the amount of CAs released.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.