As the EU's commitment to renewable energy is projected to grow to 20% of energy generation by 2020, the use of marine renewable energy from wind, wave and tidal resources is increasing. This literature review (233 studies) (i) summarizes knowledge on how marine renewable energy devices affect benthic environments, (ii) explains how these effects could alter ecosystem processes that support major ecosystem services and (iii) provides an approach to determine urgent research needs. Conceptual diagrams were set up to structure hypothesized cause-effect relationships (i.e. paths). Paths were scored for (i) temporal and spatial scale of the effect, (ii) benthic sensitivity to these effects, (iii) the effect consistency and iv) scoring confidence, and consecutively ranked. This approach identified prominent knowledge gaps and research needs about (a) hydrodynamic changes possibly resulting in altered primary production with potential consequences for filter feeders, (b) the introduction and range expansion of non-native species (through stepping stone effects) and, (c) noise and vibration effects on benthic organisms. Our results further provide evidence that benthic sensitivity to offshore renewable effects is higher than previously indicated. Knowledge on changes of ecological functioning through cascading effects is limited and requires distinct hypothesis-driven research combined with integrative ecological modelling.
Latitudinal clines in species diversity in limnic and terrestrial habitats have been noted for well over a century and are consistent across many taxonomic groups. However, studies in marine systems over the past 2 to 3 decades have yielded equivocal results. We conducted initial analyses of the MarBEF (EU Network of Excellence for Marine Biodiversity and Ecosystem Function) database to test for trends in local and regional diversity over the latitudinal extent of European continental-shelf waters (36°to 81°N). Soft-sediment benthic macrofauna exhibit little evidence of a latitudinal cline in local (α-) diversity measures. Relationships with water depth were relatively strong and complex. Statistically significant latitudinal trends were small and positive, suggesting a modest increase in diversity with latitude once water-depth covariates were removed. These results are consistent regardless of whether subsets of the database were used, replicates were pooled, or component taxonomical groups were evaluated separately. Local and regional diversity measures were significantly and positively correlated. Scientific cooperation through data-sharing is a powerful tool with which to address fundamental ecological and evolutionary questions relating to large-scale patterns and processes.
During three cruises to the Bay of Gdansk, Baltic Sea, the fauna, porewater and bottom water were sampled at stations parallel to the shore and along a transect offshore. Diffusive porewater fluxes were calculated and related to the total net fluxes (TNF) of nutrients. The TNF comprise all nutrients that reach the bottom water from the sediment including diffusive nutrient efflux, discharge from macrozoobenthos and microbial activity. They were determined during in situ incubations using a benthic chamber lander, which is rarely done in coastal research. The lander restricts the physical influence of currents and waves on the sediments and only allows nutrient fluxes due to bioturbation by natural communities. Strong benthic-pelagic coupling in the shallow coastal zone suggested a crucial filter function for the bioturbated coastal sediments, which are separated from muddy deep sediments with little or no fauna at a depth of 50 m; in between is a small intermediate zone. While diffusive fluxes were highest at intermediate and offshore stations, TNF were highest at sandy coastal stations, where reservoirs of dissolved nutrients were small and sediments almost devoid of organic material. The greatest impact of macrofauna on sedimentary fluxes was found at stations whose communities were dominated by deep-burrowing polychaetes. The largest TNF were measured directly at the mouth of the Vistula River, where riverine food and nutrients supplies were highest. Macrofauna communities and sediment variables can thus serve as descriptive indicator to estimate the extent of the coastal filter. Finally, based on the total areal size of the different sediment types, annual efflux for the complete coastal zone of the Gdansk Bay was estimated to be 6.9 kt N, 19 kt Si, and 0.9 kt P. Compared to the muddy offshore area, which is twice as large, these amounts were similar for P and threefold higher for N and Si.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.