The paper presents the influence of in-plane constraints defined by T-stress on the behavior of a crack subjected to cyclic loading. In the analysis, a modified boundary layer model approach was used in which the cohesive model was introduced. In the simulations, the constant maximum value of the stress intensity factor and four levels of T-stress were defined. The model was subjected to ten repeated stress cycles. Based on the results obtained, an analysis of the effect of the in-plane constraint on selected aspects of crack behavior was made. The strong influence of in-plane constraint applied in the model on the crack closure and the fatigue crack growth rate was proven. Since the in-plane constraint described the influence of geometry on the stress field surrounding the fatigue crack tip in real geometry, the results suggested that it is possible to create precise formulae connecting the level of the in-plane constraint with the effective stress intensity factor range and to incorporate the T-stress or Q-stress level in the Paris law.
This paper is the second part of the study of a planar manipulator and this section presents the construction of a prototype manipulator. A fuzzy control system for the manipulator is described in detail. An experimental study was carried out on the positioning of the end effector of the manipulator and a program written in the Delphi 6 environment was proposed to calculate the position. Prototype tests were performed for transpose and follow-up control. Based on the experimental results, a control quality analysis was carried out.
This paper presents the design of a planar parallel manipulator with a pneumatic drive. Such manipulators are used in production lines for sorting, selecting, packing, and palletizing workpieces. This paper presents simulation studies of the designed manipulator in Matlab/Simulink software and using the SimMechanics library. A simple kinematics problem and an inverse kinematics problem were solved in order to carry out simulation studies of the designed manipulator. Simulation studies were also carried out on the dynamics of the manipulator using a mathematical model describing the physical phenomena occurring during the operation of the manipulator’s electro-pneumatic servo-drives. The main objective of the simulation study was to determine the manipulator working space and the possibility of positional control of the manipulator end-effector using a fuzzy logic controller.
In this paper, the cellular automata model is applied to analyse cleavage and ductile fracture in front of a crack in three-point-bend specimens made of Hardox-400 steel. The research programme was composed of experiments followed by fractographic and numerical analyses. On the basis of microscopic observations, the sizes of cells used in the automata were determined. The algorithm enabled mapping of the two-dimensional crack surface as well as a simulation of temperature-dependent failure mechanisms by defining transition rules based on the modified Ritchie-Knott-Rice cleavage fracture criterion. The critical stress values were estimated and verified by the cellular automata model.
This article presents the results of a simulation in which smooth cylindrical and ring-notched samples were subjected to monotonic and fatigue loads in an ultra-short-life range, made of Inconel 718 super alloy. The samples displayed different behaviors as a result of different geometries that introduced varying levels of stress triaxiality and loading methods. The simulations used the Wierzbicki–Bai model, which took into account the influence of stress tensors and stress-deviator invariants on the behavior of the material. The difference in the behaviors of the smoothed and notched specimens subjected to tensile and fatigue loads were identified and described. The numerical results were qualitatively supported by the results of the experiments presented in the literature.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.