neochlorogenic acid, and rosmarinic acid (max. 724.2, 482.7, 154.7 mg/100 g DW, respectively). Of the examined materials, A. arbutifolia leaves were characterized by the highest total phenolics content (9148.2 mg gal. ac. Eq./100 g DW) and showed the highest antioxidant activity in DPPH and FRAP assays. The results demonstrate that fruits of A. arbutifolia and A. ×prunifolia are a rich source of antioxidants and can be used as plant raw materials, alternatively to A. melanocarpa berries. Leaves of the investigated species are of potential therapeutic and dietary interest because of their high flavonol and phenolic acid content.
The aim of the present study was to measure zinc (Zn) and iron (Fe) concentration in human semen and superoxide dismutase (SOD) activity in seminal plasma and correlate the results with sperm quality. Semen samples were obtained from men (N = 168) undergoing routine infertility evaluation. The study design included two groups based on the ejaculate parameters. Group I (n = 39) consisted of males with normal ejaculate (normozoospermia), and group II (n = 129) consisted of males with pathological spermiogram. Seminal Zn and Fe were measured in 162 samples (group I, n = 38; group II, n = 124) and SOD activity in 149 samples (group I, n = 37; group II, n = 112). Correlations were found between SOD activity and Fe and Zn concentration, and between Fe and Zn concentration. SOD activity was negatively associated with volume of semen and positively associated with rapid progressive motility, nonprogressive motility, and concentration. Negative correlation was stated between Fe concentration and normal morphology. Mean SOD activity in seminal plasma of semen from men of group I was higher than in seminal plasma of semen from men of group II. Fe concentration was higher in teratozoospermic males than in males with normal morphology of spermatozoa in group II. Our results suggest that Fe may influence spermatozoa morphology.
Schisandra chinensis plant in vitro cultures were maintained on Murashige and Skoog (MS) medium supplemented with 3 mg/l 6-benzyladenine (BA) and 1 mg/l 1-naphthaleneacetic acid (NAA) in an agar system and also in two different liquid systems: stationary and agitated. Liquid cultures were grown in batch (30 and 60 days) and fed-batch modes. In the methanolic extracts from lyophilized biomasses and in the media, quantification of fourteen dibenzocyclooctadiene lignans identified based on co-chromatography with authentic standards using high-performance liquid chromatography with diode array detection (HPLC-DAD) and/or liquid chromatography with diode array detection and electrospray ionization mass spectrometry (LC-DAD-ESI-MS) methods. For comparison purposes, phytochemical analyses were performed of lignans in the leaves and fruits of the parent plant. The main lignans detected in the biomass extracts from all the tested systems were schisandrin (max. 65.62 mg/100 g dry weight (DW)), angeloyl-/tigloylgomisin Q (max. 49.73 mg/100 g DW), deoxyschisandrin (max. 43.65 mg/100 g DW), and gomisin A (max. 34.36 mg/100 g DW). The highest total amounts of lignans in the two tested stationary systems were found in extracts from the biomass harvested after 30 days of batch cultivation: 237.86 mg/100 g DW and 274.65 mg/100 g DW, respectively. In the agitated culture, the total content reached a maximum value of 244.80 mg/100 g DW after 60 days of the fed-batch mode of cultivation. The lignans were not detected in the media. This is the first report which documents the potential usefulness of S. chinensis shoot cultures cultivated in liquid systems for practical purposes.Electronic supplementary materialThe online version of this article (doi:10.1007/s00253-015-7230-9) contains supplementary material, which is available to authorized users.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.