In natural conditions, plants growth and development depends on environmental conditions, including the availability of micro- and macroelements in the soil. Nutrient status should thus be examined not by establishing the effects of single nutrient deficiencies on the physiological state of the plant but by combinations of them. Differences in the nutrient content significantly affect the photochemical process of photosynthesis therefore playing a crucial role in plants growth and development. In this work, an attempt was made to find a connection between element content in (i) different soils, (ii) plant leaves, grown on these soils and (iii) changes in selected chlorophyll a fluorescence parameters, in order to find a method for early detection of plant stress resulting from the combination of nutrient status in natural conditions. To achieve this goal, a mathematical procedure was used which combines principal component analysis (a tool for the reduction of data complexity), hierarchical k-means (a classification method) and a machine-learning method—super-organising maps. Differences in the mineral content of soil and plant leaves resulted in functional changes in the photosynthetic machinery that can be measured by chlorophyll a fluorescent signals. Five groups of patterns in the chlorophyll fluorescent parameters were established: the ‘no deficiency’, Fe-specific deficiency, slight, moderate and strong deficiency. Unfavourable development in groups with nutrient deficiency of any kind was reflected by a strong increase in F o and ΔV/Δt 0 and decline in φ Po, φ Eo δ Ro and φ Ro. The strong deficiency group showed the suboptimal development of the photosynthetic machinery, which affects both PSII and PSI. The nutrient-deficient groups also differed in antenna complex organisation. Thus, our work suggests that the chlorophyll fluorescent method combined with machine-learning methods can be highly informative and in some cases, it can replace much more expensive and time-consuming procedures such as chemometric analyses.Electronic supplementary materialThe online version of this article (10.1007/s11120-017-0467-7) contains supplementary material, which is available to authorized users.
The use of higher plants for the production of plant growth biostimulants is receiving increased attention among scientists, farmers, investors, consumers and regulators. The aim of the present study was to examine the possibility of converting plants commonly occurring in Europe (St. John’s wort, giant goldenrod, common dandelion, red clover, nettle, valerian) into valuable and easy to use bio-products. The biostimulating activity of botanical extracts and their effect on the chemical composition of celeriac were identified. Plant-based extracts, obtained by ultrasound-assisted extraction and mechanical homogenisation, were tested in field trials. It was found that the obtained formulations increased the total yield of leaves rosettes and roots, the dry weight of leaves rosettes and roots, the content of chlorophyll a + b and carotenoids, the greenness index of leaves, the content of vitamin C in leaves and roots. They mostly decreased the content of polyphenols and antioxidant activities in leaves but increased them in roots and conversely affected the nitrates content. Extracts showed a varied impact on the content of micro and macroelements, as well as the composition of volatile compounds and fatty acids in the celeriac biomass. Due to the modulatory properties of the tested products, they may be used successfully in sustainable horticulture.
Nutraceuticals and functional foods are gaining more attention amongst consumers interested in nutritious food. The consumption of foodstuffs with a high content of phytochemicals has been proven to provide various health benefits. The application of biostimulants is a potential strategy to fortify cultivated plants with beneficial bioactive compounds. Nevertheless, it has not yet been established whether the proposed higher plants (St. John’s wort, giant goldenrod, common dandelion, red clover, nettle, and valerian) are appropriate for the production of potential bio-products enhancing the nutritional value of white cabbage. Therefore, this research examines the impact of botanical extracts on the growth and nutritional quality of cabbage grown under field conditions. Two extraction methods were used for the production of water-based bio-products, namely: ultrasound-assisted extraction and mechanical homogenisation. Bio-products were applied as foliar sprays to evaluate their impact on total yield, dry weight, photosynthetic pigments, polyphenols, antioxidant activity, vitamin C, nitrates, micro- and macroelements, volatile compounds, fatty acids, sterols, and sugars. Botanical extracts showed different effects on the examined parameters. The best results in terms of physiological and biochemical properties of cabbage were obtained for extracts from common dandelion, valerian, nettle, and giant goldenrod. When enriched with nutrients, vegetables can constitute a valuable component of functional food.
The modern agricultural sector faces the challenge of addressing the needs of the fast-growing global population. This process should be both high-yielding and sustainable, without creating risks for the environment and human health. Therefore, natural products are gaining attention in the production of safe and nutritious food. In a systematic effort to develop affordable and effective biostimulants, we examined the impact of botanical extracts on the growth and physiological parameters of radish plants under field conditions. Ultrasound-assisted extraction, mechanical homogenization, and water were used for the production of potential plant-based biostimulants. Foliar applications of the bio-products, developed and used in our study, have led to an increase in the examined parameters (total yield, dry weight, photosynthetic pigments, vitamin C, nitrates, and micro- and macroelements). A decrease in the total phenolic compounds content was also noted, as well as a varied impact on the steam volatile compounds, fatty acids, sterol, and glucosinolates composition. The most beneficial effects on radish, in terms of physiological and biochemical properties, were found in groups treated with extracts based on the common dandelion, valerian, and giant goldenrod. This innovative approach presented in our study could provide a valuable tool for sustainable horticultural production.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.