Orbital movement of the Moon generates a system of gravitational fields that periodically alter the gravitational force on Earth. This lunar tidal acceleration (Etide) is known to act as an external environmental factor affecting many growth and developmental phenomena in plants. Our study focused on the lunar tidal influence on stem elongation growth, nutations and leaf movements of peppermint. Plants were continuously recorded with time-lapse photography under constant illumination as well in constant illumination following 5 days of alternating dark-light cycles. Time courses of shoot movements were correlated with contemporaneous time courses of the Etide estimates. Optical microscopy and SEM were used in anatomical studies. All plant shoot movements were synchronised with changes in the lunisolar acceleration. Using a periodogram, wavelet analysis and local correlation index, a convergence was found between the rhythms of lunisolar acceleration and the rhythms of shoot growth. Also observed were cyclical changes in the direction of rotation of stem apices when gravitational dynamics were at their greatest. After contrasting dark-light cycle experiments, nutational rhythms converged to an identical phase relationship with the Etide and almost immediately their renewed movements commenced. Amplitudes of leaf movements decreased during leaf growth up to the stage when the leaf was fully developed; the periodicity of leaf movements correlated with the Etide rhythms. For the fist time, it was documented that lunisolar acceleration is an independent rhythmic environmental signal capable of influencing the dynamics of plant stem elongation. This phenomenon is synchronised with the known effects of Etide on nutations and leaf movements.
Stem regeneration after wounding was studied in 110-year-old trees of Pinus sylvestris L. over a period of 30 years. The changes of cambial surface are shown as 3D models. For construction of the models ArcGIS and geodesic Surfer programs were applied. The trees responded to stem injury by increasing the cambial activity near the wound edge. The result was longitudinal rolls or spindles which gradually covered the wounded stem surface. The successively formed tree rings changed their orientation to perpendicular with respect to the wound surface. The disturbances of wood formation near the wound edge were manifested by oblique orientation of xylem rays with respect to annual ring boundaries. The spatial distribution of the xylem ray orientation is presented on the Surfer contour maps. Near the fusion of the wound spindles there were some areas consisting of irregularly oriented xylem cells. The cellular ordering of the xylem tissue in these areas was measured by applying digital image analysis software. Measurements shown on color-coded maps revealed that the tracheid orientation (seen on tangential sections) deviated between 0 and 90 degrees from the stem axis. In some areas a circular pattern of tracheid orientation was visible. Crooked and forked tracheids were also present. These results support the view that the adaptive growth occurring in the case of deep wounding is analogous to that observed when an inanimate body is in lateral contact with a tree stem. The intensive growth and accumulation of newly deposited tissue in the wound spindles seems to be the most effective mechanism for the tree stem regeneration to restore its biomechanical and transport functions. This could be considered as an illustration of Wolff’s law that the shape of an organ follows its function.
Main conclusion The order of the internodes, and their geometry and mechanical characteristics influence the capability of the Equisetum stem to vibrate, potentially stimulating spore liberation at the optimum stress setting along the stem. Equisetum hyemale L. plants represent a special example of cellular solid construction with mechanical stability achieved by a high second moment of area and relatively high resistance against local buckling. We proposed the hypothesis that the order of E. hyemale L. stem internodes, their geometry and mechanical characteristics influence the capability of the stem to vibrate, stimulating spore liberation at the minimum stress setting value along the stem. An analysis of apex vibration was done based on videos presenting the behavior of an Equisetum clump filmed in a wind tunnel and also as a result of excitation by bending the stem by 20°. We compared these data with the vibrations of stems of the same size but deprived of the three topmost internodes. Also, we created a finite element model (FEM), upon which we have based the ‘natural’ stem vibration as a copy of the real object, ‘random’ with reshuffled internodes and ‘uniform’, created as one tube with the characters averaged from all internodes. The natural internode arrangement influences the frequency and amplitude of the apex vibration, maintaining an equal stress distribution in the stem, which may influence the capability for efficient spore spreading.Electronic supplementary materialThe online version of this article (doi:10.1007/s00425-017-2648-1) contains supplementary material, which is available to authorized users.
Background Cleistogamic flowers are a main barrier in pollen dispersal for cross-pollination necessary in wheat hybrid breeding. The aim of our study was to gain new knowledge on the biology of wheat flowering, in particular on the differences between the cleisto- and chasmogamic forms which has certainly cognitive significance, but it can also be used in practice when seeking a female and male ideotypes for cross hybridization. Results We characterized the most significant features defining the flowering specificity in two wheat cultivars with contrasting tendency to cleistogamy: Piko (chasmogamous) and Dacanto (cleistogamous). In the field observations we assessed diurnal pattern of anther extrusion and anther extrusion capacity. For the first time we adapted the time lapse method for measuring kinetics of the spikelet movement and 3-D image correlation technique for the non-invasive measurements of potential deformations of the spikelet lemmas. We found that the two cultivars differ in the potential of pollen dispersion for-cross-pollination and in the spikelet kinetics. We also described some anatomical traits that can have potential functional role in floret opening. None of the cultivars showed any symptoms of lemma surface deformation. Conclusions The cleistogamic and chasmogamic wheat cultivars differ significantly in the potential for pollen dispersion for cross-pollination, which is mainly related to anther extrusion capacity. Although none of these features differentiated the cultivars clearly, we assume, based on spikelet kinetics and the lack of lemmas surface deformation, that the water transport and turgor of cells is essential for the floret opening and anther extrusion in wheat. The search for parental ideotype should be supported by marker assisted selection, e.g. based of polymorphisms in genes related to aquaporin biosynthesis.
Main conclusionStump overgrowth may serve as a unique model for studying cellular reorganization and mechanisms responsible for cell polarity changes during the process of vascular tissue differentiation from initially unorganized parenchymatous cells.Cellular ordering and tissue reorganization during the overgrowth process of the transverse surfaces of Douglas fir stumps in forest stand was studied. At the beginning of stump overgrowth, the produced parenchymatous cells form an unorganized tissue. Particular parenchyma cells start arranging into more ordered structures which resemble rays. Application of digital image analysis software based on structure tensor was used. The analysis showed that at this stage of tissue development, cellular elements display a wide range of angular orientation values and attain very low coherency coefficients. The progress of the tissue differentiation process is associated with the formation of local regions with tracheids oriented circularly around the rays. This coincides with an increase in the range of angular orientations and greater values of coherency coefficients. At the most advanced stage of tissue development, with tracheids arranged parallelly in longitudinal strands, the degree of cell ordering is the highest what is manifested by the greatest values attained by coherency coefficients, and the narrow range of angular orientations. It is suggested that the ray-like structures could act as organizing centers in the morphogenetic field responsible for differentiation of the overgrowth tissue. The circular pattern of tracheids around rays in the initial phase of tissue development can be interpreted in terms of local rotation of the morphogenetic field which afterward is transformed into irrotational field. This transformation is noted by the presence of tracheids arranged parallelly in longitudinal strands. The possible involvement of a mechanism controlling cell polarity with respect to auxin transport is discussed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.