In the process of tunneling of tunnel boring machine (TBM), different geological conditions often correspond to different working conditions, and the randomness of geological conditions also causes the order of occurrence of each working condition to be different. Under the conversion of different working conditions, this makes the vibration of different types of cutterheads different. How to choose the appropriate type of cutterhead according to different geological conditions is very important for saving engineering cost and increasing cutterhead life. In view of the above situation, this paper proposes a stability evaluation method during the TBM tunneling process to select the appropriate cutterhead type. Firstly, the corresponding relationship between geology and working conditions is established according to different geological conditions, and the input loads corresponding to geological conditions are obtained. Then, it is substituted into the dynamic model of the cutterhead system, the vibration response boundaries of each degree of freedom are obtained by solving. And the average value of the maximum boundary amplitude of each degree of freedom is taken to represent the extreme vibration of the cutterhead under the corresponding working conditions. Finally, by comparing the fluctuation of the ultimate vibration amplitude of each type of cutterhead in the process of working condition conversion, the results are as follows: when the transition between homogeneous strata and composite strata is normal and there is no large turning and deviation correction, the vibration response of the two-part cutterhead is the smallest, and the two-part cutterhead is the best choice. Otherwise, the five-part cutterhead is the best choice, while the stability of the integrated cutterhead is the worst.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.