Purpose Fulvestrant is known to promote the degradation of the estrogen receptor (ER) in the nucleus. However, fulvestrant also promotes the aggregation of the newly synthesized ER in the cytoplasm. Accumulation of protein aggregates leads to cell death but this effect is limited as a result of their elimination by the proteasome. We tested whether combining fulvestrant with the proteasome inhibitor, bortezomib, could enhance the accumulation of ER aggregates and cause apoptotic cell death. Experimental Design The rate of aggregation of the ER was monitored in ER+ breast cancer cells lines, T47D, ZR-75.1, BT474, MDA-MB-361, MCF-7, fulvestrant resistance MCF-7, and tamoxifen-resistant T47D-cyclin D1 cells. Activation of the unfolded protein response, apoptosis, and metabolic rate were also monitored in these cell lines following treatment with fulvestrant, bortezomib, or bortezomib in combination with fulvestrant. Results We found that bortezomib enhances the fulvestrant-mediated aggregation of the ER in the cytoplasm without blocking the degradation of the ER in the nucleus. Further, these aggregates activate a sustained unfolded protein response leading to apoptotic cell death. Further, we show that the combination induced tumor regression in a breast cancer mouse model of tamoxifen resistance. Conclusions Adding bortezomib to fulvestrant enhances its efficacy by taking advantage of the unique ability of fulvestrant to promote cytoplasmic aggregates of the ER. As this effect of fulvestrant is independent of the transcriptional activity of the ER, these results suggest that this novel combination may be effective in breast cancers that are ER+ but estrogen independent.
Liquid biopsy is increasingly gaining traction as an alternative to invasive solid tumor biopsies for prognosis, treatment decisions, and disease monitoring. Matched tumor‐plasma samples were collected from 180 patients across different cancers with >90% of the samples below Stage IIIB. Tumors were profiled using next‐generation sequencing (NGS) or quantitative PCR (qPCR), and the mutation status was queried in the matched plasma using digital platforms such as droplet digital PCR (ddCPR) or NGS for concordance. Tumor‐plasma concordance of 82% and 32% was observed in advanced (Stage IIB and above) and early (Stage I to Stage IIA) stage samples, respectively. Interestingly, the overall survival outcomes correlated to presurgical/at‐biopsy ctDNA levels. Baseline ctDNA stratified patients into three categories: (a) high ctDNA correlated with poor survival outcome, (b) undetectable ctDNA with good outcome, and (c) low ctDNA whose outcome was ambiguous. ctDNA could be a powerful tool for therapy decisions and patient management in a large number of cancers across a variety of stages.
BACKGROUND: Oral cavity squamous cell carcinoma (OCSCC) is the most common head and neck malignancy. Although the survival rate of patients with advanced-stage disease remains approximately 20% to 60%, when detected at an early stage, the survival rate approaches 80%, posing a pressing need for a well validated profiling method to assess patients who have a high risk of developing OCSCC. Tumor DNA detection in saliva may provide a robust biomarker platform that overcomes the limitations of current diagnostic tests. However, there is no routine saliva-based screening method for patients with OCSCC. METHODS: The authors designed a custom nextgeneration sequencing panel with unique molecular identifiers that covers coding regions of 7 frequently mutated genes in OCSCC and applied it on DNA extracted from 121 treatment-naive OCSCC tumors and matched preoperative saliva specimens. RESULTS: By using stringent variant-calling criteria, mutations were detected in 106 tumors, consistent with a predicted detection rate ≥88%. Moreover, mutations identified in primary malignancies were also detected in 93% of saliva samples. To ensure that variants are not errors resulting in false-positive calls, a multistep analytical validation of this approach was performed: 1) re-sequencing of 46 saliva samples confirmed 88% of somatic variants; 2) no functionally relevant mutations were detected in saliva samples from 11 healthy individuals without a history of tobacco or alcohol; and 3) using a panel of 7 synthetic loci across 8 sequencing runs, it was confirmed that the platform developed is reproducible and provides sensitivity on par with droplet digital polymerase chain reaction. CONCLUSIONS: The current data highlight the feasibility of somatic mutation identification in driver genes in saliva collected at the time of OCSCC diagnosis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.