PURPOSE Severe (grade 3-4) acute graft-versus-host disease (AGVHD) is a major cause of death after unrelated-donor (URD) hematopoietic cell transplant (HCT), resulting in particularly high mortality after HLA-mismatched transplantation. There are no approved agents for AGVHD prevention, underscoring the critical unmet need for novel therapeutics. ABA2 was a phase II trial to rigorously assess safety, efficacy, and immunologic effects of adding T-cell costimulation blockade with abatacept to calcineurin inhibitor (CNI)/methotrexate (MTX)-based GVHD prophylaxis, to test whether abatacept could decrease AGVHD. METHODS ABA2 enrolled adults and children with hematologic malignancies under two strata: a randomized, double-blind, placebo-controlled stratum (8/8-HLA-matched URD), comparing CNI/MTX plus abatacept with CNI/MTX plus placebo, and a single-arm stratum (7/8-HLA-mismatched URD) comparing CNI/MTX plus abatacept versus CNI/MTX CIBMTR controls. The primary end point was day +100 grade 3-4 AGVHD, with day +180 severe-AGVHD-free-survival (SGFS) a key secondary end point. Sample sizes were calculated using a higher type-1 error (0.2) as recommended for phase II trials, and were based on predicting that abatacept would reduce grade 3-4 AGVHD from 20% to 10% (8/8s) and 30% to 10% (7/8s). ABA2 enrolled 142 recipients (8/8s, median follow-up = 716 days) and 43 recipients (7/8s, median follow-up = 708 days). RESULTS In 8/8s, grade 3-4 AGVHD was 6.8% (abatacept) versus 14.8% (placebo) ( P = .13, hazard ratio = 0.45). SGFS was 93.2% (CNI/MTX plus abatacept) versus 82% (CNI/MTX plus placebo, P = .05). In the smaller 7/8 cohort, grade 3-4 AGVHD was 2.3% (CNI/MTX plus abatacept, intention-to-treat population), which compared favorably with a nonrandomized matched cohort of CNI/MTX (30.2%, P < .001), and the SGFS was better (97.7% v 58.7%, P < .001). Immunologic analysis revealed control of T-cell activation in abatacept-treated patients. CONCLUSION Adding abatacept to URD HCT was safe, reduced AGVHD, and improved SGFS. These results suggest that abatacept may substantially improve AGVHD-related transplant outcomes, with a particularly beneficial impact on HLA-mismatched HCT.
Key Points The MAGIC algorithm probability, computed from 2 serum biomarkers, predicts mortality in all GVHD grades after 4 weeks of treatment. Dynamic changes in the MAGIC algorithm probability occur within all biomarker risk groups and can guide therapy.
A disease risk index (DRI) that was developed for adults with hematologic malignancy undergoing hematopoietic cell transplant is also being used to stratify children and adolescents by disease risk. Therefore, in this study, we analyzed 2569 patients aged <18 years with acute myeloid (AML; n=1224) or lymphoblastic (ALL; n=1345) leukemia undergoing hematopoietic cell transplant to develop and validate a DRI that may be used to stratify those with AML and ALL by their disease risk. Training and validation subsets for each disease were generated randomly with 1:1 assignment to the subsets and separate prognostic models were derived for each disease. For AML, four risk groups were identified based on age, cytogenetic risk, and disease status including minimal residual disease status at transplantation. The 5-year leukemia-free survival for low (0 points), intermediate (2, 3, 5), high (7, 8), and very high (>8) risk groups were 78%, 53%, 40%, and 25%, respectively, p<0.0001. For ALL, three risk groups were identified based on age and disease status including minimal residual disease status at transplantation. The 5-year leukemia-free survival for low (0 points), intermediate (2-4), and high (≥5) risk groups were 68%, 51%, and 33%, respectively, p<0.0001. We confirmed the risk groups can be applied for overall survival with 5-year survival ranged from 80% to 33% and 73% to 42% for AML and ALL, respectively (p<0.0001). This validated pediatric DRI that includes age and residual disease status can be used to facilitate prognostication and stratification of children with AML and ALL for allogeneic transplantation.
The graft-versus-leukemia (GVL) effect after allogeneic hematopoietic cell transplant (HCT) can prevent relapse but the risk of severe graft-vs-host disease (GVHD) leads to prolonged intensive immunosuppression and possible blunting of the GVL effect. Strategies to reduce immunosuppression in order to prevent relapse have been offset by increases in severe GVHD and non-relapse mortality (NRM). We recently validated the MAGIC algorithm probability (MAP) that predicts the risk for severe GVHD and NRM in asymptomatic patients using serum biomarkers. In this study we tested whether the MAP could identify patients whose risk for relapse is higher than their risk for severe GVHD and NRM. The multicenter study population (n=1604) was divided into two cohorts: historical (2006–2015, n=702) and current (2015–2017, n=902) with similar non-relapse mortality, relapse, and survival. On day 28 post-HCT, patients who had not developed GVHD (75% of the population) and who possessed a low MAP were at much higher risk for relapse (24%) than severe GVHD and NRM (16% and 9%); this difference was even more pronounced in patients with a high disease risk index (relapse 33%, NRM 9%). Such patients are good candidates to test relapse prevention strategies that might enhance GVL.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.