Fifth generation (5G) wireless networks are expected to support very diverse applications and terminals. Massive connectivity with a large number of devices is an important requirement for 5G networks. Current LTE system is not able to efficiently support massive connectivity, especially on the uplink (UL). Among the issues arise due to massive connectivity is the cost of signaling overhead and latency. In this paper, an uplink contention-based sparse code multiple access (SCMA) design is proposed as a solution. First, the system design aspects of the proposed multiple-access scheme are described. The SCMA parameters can be adjusted to provide different levels of overloading, thus suitable to meet the diverse traffic connectivity requirements. In addition, the system-level evaluations of a small packet application scenario are provided for contention-based UL SCMA. SCMA is compared to OFDMA in terms of connectivity and drop rate under a tight latency requirement. The simulation results demonstrate that contention-based SCMA can provide around 2.8 times gain over contention-based OFDMA in terms of supported active users. The uplink contention-based SCMA scheme can be a promising technology for 5G wireless networks for data transmission with low signaling overhead, low delay, and support of massive connectivity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.