The popularity of rule-based flocking models, such as Reynolds' classic flocking model, raises the question of whether more declarative flocking models are possible. This question is motivated by the observation that declarative models are generally simpler and easier to design, understand, and analyze than operational models. We introduce a very simple control law for flocking based on a cost function capturing cohesion (agents want to stay together) and separation (agents do not want to get too close). We refer to it as declarative flocking (DF). We use model-predictive control (MPC) to define controllers for DF in centralized and distributed settings. A thorough performance comparison of our declarative flocking with Reynolds' classic flocking model, and with more recent flocking models that use MPC with a cost function based on lattice structures, demonstrate that DF-MPC yields the best cohesion and least fragmentation, and maintains a surprisingly good level of geometric regularity while still producing natural flock shapes similar to those produced by Reynolds' model. We also show that DF-MPC has high resilience to sensor noise. ACM Reference Format:
We present Distributed Simplex Architecture (DSA), a new runtime assurance technique that provides safety guarantees for multiagent systems (MASs). DSA is inspired by the Simplex control architecture of Sha et al., but with some significant differences. The traditional Simplex approach is limited to single-agent systems or a MAS with a centralized control scheme. DSA addresses this limitation by extending the scope of Simplex to include MASs under distributed control. In DSA, each agent has a local instance of traditional Simplex such that the preservation of safety in the local instances implies safety for the entire MAS. We provide a proof of safety for DSA, and present experimental results for several case studies, including flocking with collision avoidance, safe navigation of ground rovers through way-points, and the safe operation of a microgrid.
We show how a symmetric and fully distributed flocking controller can be synthesized using Deep Learning from a centralized flocking controller. Our approach is based on Supervised Learning, with the centralized controller providing the training data, in the form of trajectories of state-action pairs. We use Model Predictive Control (MPC) for the centralized controller, an approach that we have successfully demonstrated on flocking problems. MPC-based flocking controllers are high-performing but also computationally expensive. By learning a symmetric and distributed neural flocking controller from a centralized MPC-based one, we achieve the best of both worlds: the neural controllers have high performance (on par with the MPC controllers) and high efficiency. Our experimental results demonstrate the sophisticated nature of the distributed controllers we learn. In particular, the neural controllers are capable of achieving myriad flocking-oriented control objectives, including flocking formation, collision avoidance, obstacle avoidance, predator avoidance, and target seeking. Moreover, they generalize the behavior seen in the training data to achieve these objectives in a significantly broader range of scenarios. In terms of verification of our neural flocking controller, we use a form of statistical model checking to compute confidence intervals for its convergence rate and time to convergence.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.