Robust and computationally efficient anomaly detection in videos is a problem in video surveillance systems. We propose a technique to increase robustness and reduce computational complexity in a Convolutional Neural Network (CNN) based anomaly detector that utilizes the optical flow information of video data. We reduce the complexity of the network by denoising the intermediate layer outputs of the CNN and by using powers-of-two weights, which replaces the computationally expensive multiplication operations with bit-shift operations. Denoising operation during inference forces small valued intermediate layer outputs to zero. The number of zeros in the network significantly increases as a result of denoising, we can implement the CNN about 10% faster than a comparable network while detecting all the anomalies in the testing set. It turns out that denoising operation also provides robustness because the contribution of small intermediate values to the final result is negligible. During training we also generate motion vector images by a Generative Adversarial Network (GAN) to improve the robustness of the overall system. We experimentally observe that the resulting system is robust to background motion.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.