This paper illustrates the functionality of Wireshark as a sniffing tool in networks. This has been proven by an experimental setup which depicts the efficiency of detection of a malicious packet in any network. Testing has been achieved through experimentation on a real time network analyzed by Wireshark. Inferences have been made which clearly depict Wireshark's capabilities highlighting it as a strong candidate for future development into a robust intrusion detection system. This paper highlights the working of Wireshark as a network protocol analyzer and also accentuates its flexibility as an open source utility to allow developers to add possible functionalities of intrusion detection devices in it.
The behavior and nature of attacks and threats to computer network systems have been evolving rapidly with the advances in computer security technology. At the same time however, computer criminals and other malicious elements find ways and methods to thwart such protective measures and find techniques of penetrating such secure systems. Therefore adaptability, or the ability to learn and react to a consistently changing threat environment, is a key requirement for modern intrusion detection systems. In this paper we try to develop a novel metric to assess the performance of such intrusion detection systems under the influence of attacks. We propose a new metric called feedback reliability ratio for an intrusion detection system. We further try to modify and use the already available statistical Canberra distance metric and apply it to intrusion detection to quantify the dissimilarity between malicious elements and normal nodes in a network
Very often it so happens that the cost of operating an Intrusion Detection System (IDS) exceeds the cost of purchasing the IDS itself. In such cases, regular operation and maintenance of the system becomes expensive. Thus, it becomes essential to reduce the operating cost of the IDS without compromising on the performance and reliability of the IDS. Apart from the initial cost of procuring the IDS, other costs include cost of accessories required and cost of administration etc. In this paper we calculate the cost benefit tradeoffs of an IDS. We propose a method to determine the optimum operating point of the IDS. In an effort to solve the problems of the previously proposed metrics, we propose a decision tree based approach to calculate the cost of operating an IDS in a mobile adhoc network. Mathematically and programmatically we deduce the minimum operating point of operation of an IDS and generate the receiver operating characteristic curve of the IDS. To further ascertain this, we use available network packet capture data and calculate the minimum operating cost of an IDS. The main motive behind this paper is to show that the cost of operating an IDS in a MANET can be minimized and hence the effectiveness and performance of the IDS can be maximized.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.