Alcaligenes latus, isolated from industrial effluent, was able to grow in mineral salts medium with 50 ppm (0.15 mM) of H-acid as a sole source of carbon. Immobilization of Alcaligenes latus in Ca-alginate and polyurethane foam resulted in cells embedded in the matrices. When free cells and immobilized cells were used for biodegradation studies at concentration ranging from 100 ppm (0.3 mM) to 500 ppm (1.15 mM) degradation rate was enhanced with immobilized cells. Cells immobilized in polyurethane foam showed 100% degradation up to 350 ppm (1.05 mM) and 57% degradation at 500 ppm (1.5 mM). Degradation rate of Ca-alginate immobilized cells was less as compared to that of polyurethane foam immobilized cells.With Ca-alginate immobilized cells 100% degradation was recorded up to 200 ppm (0.6 mM) of H-acid and only 33% degradation was recorded at 500 ppm (1.5 mM) of H-acid. Spectral analysis of the products after H-acid utilization showed that the spent medium did not contain any aromatic compounds indicating H-acid degradation by A. latus.
Background ℽ-Aminobutyric acid (GABA) is a non-proteinaceous amino acid. In the mammalian nervous system, GABA functions as an inhibitory neurotransmitter. The present study focused on screening and optimization of ℽ-aminobutyric acid (GABA) yield by lactic acid bacteria by using soymilk as basal media. Lactobacillus fermentum (Lb. fermentum) was isolated from sourdough. The qualitative confirmation of GABA production by Lb. fermentum was observed by detecting colored spots on thin layer chromatography plate (TLC) and comparing it with standard GABA spot. The GABA from bacteria is confirmed by its molecular mass using mass spectrophotometry analysis (MS analysis). Single variable experiments were conducted for various physical and nutritional parameters, and determined the GABA content produced from Lb. fermentum, viable bacterial count, and pH of the fermented soymilk medium. Experimental data were authenticated by using response surface method (RSM) and artificial neural network (ANN) model. Results The results demonstrated that through single variable experiments, the yield of GABA and the viable bacterial cells increased in soymilk containing one percent of glucose, monosodium glutamate (MSG), and inoculum volume incubated at 37 °C, 48 h at pH 5. According to RSM results, the interaction of the highest concentration of MSG (1.5%) and mid glucose concentration (1.156%) yielded maximum GABA (5.54 g/L). The experimental data were in good agreement with two optimization models. The RSM models showed less error percentage than that of the ANN model. Conclusion This study indicates that soymilk is the best basal substrate for GABA production and growth of Lb. fermentum compared to synthetic media. Lb. fermentum can be explored further by food and pharmaceutical industries for the development of functional foods and therapeutic purposes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.