The beneficial influence of three common spices was examined in experimental rats on: (i) the membrane fluidity of intestinal brush-border membranes (BBM), (ii) the activity of intestinal membrane-bound enzymes, and (iii) ultrastructural alterations in the intestinal epithelium. Groups of male Wistar rats were maintained on dietary black pepper (0·5 %), red pepper (3·0 %), ginger (0·05 %) and spice bioactive compounds piperine (0·02 %) and capsaicin (0·01 %) for 8 weeks. A membrane fluidity study using an apolar fluorescent probe showed increased BBM fluidity in all the spice-fed animals. This was corroborated by a decreased cholesterol:phospholipid ratio in the jejunal and ileal regions of the intestine. These dietary spices stimulated the activities of BBM enzymes (glycyl-glycine dipeptidase, leucine amino peptidase and g-glutamyl transpeptidase) in the jejunal mucosa, suggesting a modulation in membrane dynamics due to the apolar spice bioactive compounds interacting with surrounding lipids and hydrophobic portions in the protein vicinity, which may decrease the tendency of membrane lipids to act as steric constraints to enzyme proteins and thus modify enzyme conformation. Scanning electronic microscopy of the intestinal villi in these spice treatments revealed alterations in the ultrastructure, especially an increase in microvilli length and perimeter which would mean a beneficial increase in the absorptive surface of the small intestine, providing for an increased bioavailability of micronutrients. Thus, dietary spices (black pepper, red pepper and ginger) were evidenced to induce alterations in BBM fluidity and passive permeability property, associated with the induction of an increased microvilli length and perimeter, resulting in an increased absorptive surface of the small intestine.Dietary spices: Brush-border enzymes: Intestinal brush border: Fluidity
Thus, dietary ginger and other spice compounds enhance fat digestion and absorption in high-fat fed situation through enhanced secretion of bile salts and a stimulation of the activity pancreatic lipase. At the same time, the energy expenditure is facilitated by these spices to prevent the accumulation of absorbed fat.
Spices are traditionally known to have digestive stimulant action and to cure digestive disorders. In this study, the protective effect of dietary spices with respect to activities of antioxidant enzymes in gastric and intestinal mucosa was examined. Groups of Wistar rats were fed for 8 weeks with diets containing black pepper (0.5%), piperine (0.02%), red pepper (3.0%), capsaicin (0.01%), and ginger (0.05%). All these spices significantly enhanced the activities of antioxidant enzymes--superoxide dismutase, catalase, glutathione reductase, and glutathione-S-transferase--in both gastric and intestinal mucosa, suggesting a gastrointestinal protective role for these spices. In a separate study, these dietary spices were found to alleviate the diminished activities of antioxidant enzymes in gastric and intestinal mucosa under conditions of ethanol-induced oxidative stress. The gastroprotective effect of the spices was also reflected in their positive effect on mucosal glycoproteins, thereby lowering mucosal injury. The amelioration of the ethanol-induced decrease in the activities of antioxidant enzymes in gastric and intestinal mucosa by dietary spices suggests their beneficial gastrointestinal protective role. This is the first report on the gastrointestinal protective potential of dietary spices.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.