Mesenchymal stem cells (MSCs) with their multilineage developmental plasticity comprise a promising tool for regenerative cell-based therapy. Despite important biological properties, which the MSCs from different sources share, the differences between them are poorly understood. Hence, it is required to assign a molecular signature to each of these MSC populations, based on stem cell related genes and early lineage or developmental markers. Understanding their propensity to differentiate to different lineages is fundamental for the development of successful cell-based therapies. Culture expansion of MSCs is a prerequisite, since high absolute numbers of stem cells are required to attain a clinical dose. Here, we compared the different culture conditions for long-term expansion of human MSCs isolated from the Wharton's jelly (WJ) of the umbilical cord while preserving their stem cell characteristics and differentiation potential. We find that DMEM-KO and DMEM-F12 are superior as compared to the other media tested in supporting the in vitro expansion of the WJ-MSCs. We studied the gene expression profile of WJ and bone marrow-derived MSCs (BM-MSCs) both at early and late passages using Human Stem Cell Pluripotency Array, and our data revealed differences at the transcriptional level between the two MSC types. Compared to BM-MSCs, WJ-MSCs had higher expression of undifferentiated human embryonic stem cell (hES) markers like NANOG, DNMT3B, and GABRB3, pluripotent/stem cell markers, as well as some early endodermal markers both at early and late passages. To conclude, WJ-MSCs possess properties of true stem cells, which they retain even after extended in vitro culturing.
Multipotent mesenchymal stromal cells (MSCs) from Wharton's jelly (WJ) of umbilical cord bear higher proliferation rate and self-renewal capacity than adult tissue-derived MSCs and are a primitive stromal cell population. Stem cell niche or physiological microenvironment plays a crucial role in maintenance of stem cell properties and oxygen concentration is an important component of the stem cell niche. Low oxygen tension or hypoxia is prevalent in the microenvironment of embryonic stem cells and many adult stem cells at early stages of development. Again, in vivo, MSCs are known to home specifically to hypoxic events following tissue injuries. Here we examined the effect of hypoxia on proliferation and in vitro differentiation potential of WJ-MSCs. Under hypoxia, WJ-MSCs exhibited improved proliferative potential while maintaining multi-lineage differentiation potential and surface marker expression. Hypoxic WJ-MSCs expressed higher mRNA levels of hypoxia inducible factors, notch receptors and notch downstream gene HES1. Gene expression profile of WJ-MSCs exposed to hypoxia and normoxia was compared and we identified a differential gene expression pattern where several stem cells markers and early mesodermal/endothelial genes such as DESMIN, CD34, ACTC were upregulated under hypoxia, suggesting that in vitro culturing of WJ-MSCs under hypoxic conditions leads to adoption of a mesodermal/endothelial fate. Thus, we demonstrate for the first time the effect of hypoxia on gene expression and growth kinetics of WJ-MSCs. Finally, although WJ-MSCs do not induce teratomas, under stressful and long-term culture conditions, MSCs can occasionally undergo transformation. Though there were no chromosomal abnormalities, certain transformation markers were upregulated in a few of the samples of WJ-MSCs under hypoxia.
MSCs are promising candidates for stem cell therapy and regenerative medicine. Umbilical cord is the easiest obtainable biological source of MSCs and the Wharton's jelly of the umbilical cord is a rich source of fetus-derived stem cells. However, the use of MSCs for therapeutic application is based on their subsequent large-scale in vitro expansion. A fast and efficient protocol for generation of large quantities of MSCs is required to meet the clinical demand and biomedical research needs. Here we have optimized conditions for scaling up of WJ-MSCs. Low seeding density along with basic fibroblast growth factor (bFGF) supplementation in the growth medium, which is DMEM-KO, resulted in propagation of more than 1 x 10(8) cells within a time period of 15 days from a single umbilical cord. The upscaled WJ-MSCs retained their differentiation potential and immunosuppressive capacity. They expressed the typical hMSC surface antigens and the addition of bFGF in the culture medium did not affect the expression levels of HLA-DR and CD 44. A normal karyotype was confirmed in the large-scale expanded WJ-MSCs. Hence, in this study we attempted rapid clinical-scale expansion of WJ-MSCs which would allow these fetus-derived stem cells to be used for various allogeneic cell-based transplantations and tissue engineering.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.