Thermodynamic hydricities (Δ G) in acetonitrile and dimethyl sulfoxide have been calculated and experimentally measured for several metal-free hydride donors: NADH analogs (BNAH, CN-BNAH, Me-MNAH, HEH), methylene tetrahydromethanopterin analogs (BIMH, CAFH), acridine derivatives (Ph-AcrH, MeN-AcrH, T-AcrH, 4OH, 2OH, 3NH), and a triarylmethane derivative (6OH). The calculated hydricity values, obtained using density functional theory, showed a reasonably good match (within 3 kcal/mol) with the experimental values, obtained using "potential p K" and "hydride-transfer" methods. The hydride donor abilities of model compounds were in the 48.7-85.8 kcal/mol (acetonitrile) and 46.9-84.1 kcal/mol (DMSO) range, making them comparable to previously studied first-row transition metal hydride complexes. To evaluate the relevance of entropic contribution to the overall hydricity, Gibbs free energy differences (Δ G) obtained in this work were compared with the enthalpy (Δ H) values obtained by others. The results indicate that, even though Δ H values exhibit the same trends as Δ G, the differences between room-temperature Δ G and Δ H values range from 3 to 9 kcal/mol. This study also reports a new metal-free hydride donor, namely, an acridine-based compound 3NH, whose hydricity exceeds that of NaBH. Collectively, this work gives a perspective of use metal-free hydride catalysts in fuel-forming and other reduction processes.
Metal-free motifs, such as graphitic carbon nitride, conjugated polymers, and doped nanostructures, are emerging as a new class of Earth-abundant materials for solar fuel devices. Although these metal-free structures show great potential, detailed mechanistic understanding of their performance remains limited. Here, we review important experimental and theoretical findings relevant to the role of metal-free motifs as either photoelectrodes or electrocatalysts. First, the light-harvesting characteristics of metal-free photoelectrodes (band energetics, exciton binding energies, charge carrier mobilities and lifetimes) are discussed and contrasted with those in traditional inorganic semiconductors (such as Si). Second, the mechanistic insights into the electrocatalytic oxygen reduction and evolution reactions, hydrogen evolution reaction, and carbon dioxide reduction reaction by metal-free motifs are summarized, including experimental surface-sensitive spectroscopy findings, studies on small molecular models, and computational modeling of these chemical transformations.
The conformational flexibility of three covalently linked dimers consisting of two xanthene‐based moieties connected by a diphenyl ether linker was studied using NMR spectroscopy, X‐ray crystallography, and density functional theory (DFT) calculations. The three dimers interconvert as a function of pH: the doubly cationic dimer (Xan+)2 exists in acidic solutions (pH < 0.5), the mono‐alcohol monocation Xan+–Xan‐OH at intermediate pH values (pH = 1–3), and the neutral diol at the highest pH‐values (pH > 3). Each dimer exhibits conformational degrees of freedom associated with rotations of either the xanthene moiety or of the diphenyl ether (DPE) linker. The barriers for rotation of the xanthylium moiety were evaluated using DFT calculations, yielding values of 23 kcal/mol for (Xan+)2 and 11 kcal/mol for (Xan‐OH)2, respectively. The rotational barrier for the diphenyl ether linker in Xan+–Xan‐OH (15 kcal/mol) was experimentally determined using variable temperature NMR measurements. The relative orientation of the two –OH groups in (Xan‐OH)2 diol was investigated in solution and the solid state using NMR spectroscopy and X‐ray crystallography. The conformer observed in the solid state was found to be the In–Out conformer, while free rotation of the xanthenol units is thought to occur on the NMR timescale at room temperature. These studies are relevant for the design of linkers for efficient water oxidation catalysts. Copyright © 2016 John Wiley & Sons, Ltd.
Cocatalysis is a promising approach toward enhanced electrocatalytic activity. We report such synergic catalysis involving organic xanthylium-based catalyst, Xan, and oxides formed on the electrode surface. The oxygen evolution reaction (OER) was observed on some working electrodes (gold, platinum, glassy carbon, boron-doped diamond), while others (titanium and fluorine-doped tin oxide) exhibited no OER activity. On the basis of experimental data and supported by calculations, we propose a mechanism in which oxidized Xan activates electrode toward the rate-determining O-O bond formation. In light of our findings, efficient OER electrocatalysis can be achieved using materials that strongly bind oxygen species and electron-deficient organic cations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.