Anesthetized adult and senescent male Fischer 344 rats were instrumented for stimulation of in situ plantar flexor muscles and blood flow measurement by the tracer microsphere technique. After determination of optimum length and maximum tetanic force, muscles were stimulated to contract at the rate of 120 tetani/min. Senescent rats displayed significantly lower muscle blood flow and greater muscle fatigue than younger rats. Infusion of a nonspecific vasodilator in resting anesthetized rats also revealed a significantly lower potential to increase muscle blood flow in the senescent rats. Lower muscle blood flow of senescent rats during muscle contractions might be responsible, at least in part, for decreased performance of muscles of senescent male rats.
Alterations in leukocyte/endothelium interaction due to phototoxic effects of the fluorescent dyes acridine orange (AO) and rhodamine 6G (Rh6G) were studied by intravital microscopy using the dorsal skinfold model in awake Syrian golden hamsters. AO (0.5 mg/kg/min; constant IV infusion) and Rh6G (0.1 micromol/kg; bolus IV) were administered via an indwelling venous catheter. Five to seven arterioles (35-55 microm) and postcapillary venules (30-65 microm) were investigated in each animal. Vessels were exposed four times for 30 sec to continuous light of the appropriate excitation wavelength with a 10-15-min time interval between exposures. Animals were randomly assigned to five experimental groups (five distinct light energy levels). AO and Rh6G induced leukocyte rolling/sticking in postcapillary venules and arterioles when exposed to high light energy levels. AO, but not Rh6G, induced arteriolar vasospasm when exposed to high light energies. The potential phototoxic effect of AO and Rh6G is demonstrated, as assessed by the stimulation of leukocyte-endothelium interaction and arteriolar vasospasm in vivo. This study underscores the necessity to optimize microscopic set-ups for intravital microscopy, to reduce the excitation light energy level significantly, and to perform stringent control experiments, ruling out an artificial phototoxicity-induced stimulation of leukocyte adhesion.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.